s = a[np.apply_along_axis(lambda x:x[4]>0.8,axis=1,arr=a)] print(s) print() ###2222 mask = a[:,4] > 0.8 print(mask) print(a[mask]) print() ###333 print(a[a[:,4]>0.8,:]) ### [[1. 2. 3. 4. 0.85 2. ] [1. 2. 3. 4. 0.95 3. ] [1. 2. 3. 4. 0...
return self._apply('roll_min', 'min', **kwargs) File "/home/doctorq/.local/share/virtualenvs/scscore-K9x97I77/lib/python3.7/site-packages/pandas/core/window.py", line 879, in _apply result = np.apply_along_axis(calc, self.axis, values) File "/home/doctorq/.local/share/virtualen...
a = np.array(a)###11111s = a[np.apply_along_axis(lambda x:x[4]>0.8,axis=1,arr=a)] print(s) print()###2222mask = a[:,4] >0.8print(mask) print(a[mask]) print()###333print(a[a[:,4]>0.8,:])###[[1.2.3.4.0.852.] [1. 2. 3. 4. 0.95 3.] [1. 2. 3. 4. ...
这因为我们正在使用一个 Dataset 对象,这些代码告诉 TensorFlow 临时将张量转换为 NumPy 数组,然后再输入到数据增强的处理流程中: def apply_pipeline(y, sr): shifted = augmentations_pipeline(y, sr) return shifted @tf.function def tf_apply_pipeline(feature, sr,...
apply_along_axis(lambda x: np.bincount(x, minlength=minlength), axis=-1, arr=indices.view(N, C, -1).numpy()) return torch.from_numpy(r).view(input.size()) To add a frequency counter that takes the indices returned by max pooling 2d (for instance) and sets in the location of ...
"TestApplyAlongAxis.test_0d_array", "TestHistogramdd.test_bins_errors", "TestHistogramdd.test_equal_edges", "TestHistogram.test_precision", "TestHistogramdd.test_finite_range", "TestHistogramdd.test_weights", "TestHistogram.test_error_binnum_type", "TestHistogram.test_finite_range", "TestHi...
swapaxes_(self, axis0, axis1) swapdims(self, dim0, dim1) swapdims_(self, dim0, dim1) symeig(self, eigenvectors=False, upper=True) t(self) take(self, indices) take_along_dim(self, indices, dim) tan(self) tanh(self) tanh_(self) ...
plot_spectrogram(spec[0], title="Masked along frequency axis") 总结 在这篇博文中,我们介绍了2个主流深度学习框架的音频增强的方法,所以如果你是TF的爱好者,可以使用我们介绍的两种方法进行测试,如果你是pytorch的爱好者,直接使用官方的torchaudio包就可以了。
plot_spectrogram(spec[0], title="Masked along frequency axis") 在这篇博文中,我们介绍了2个主流深度学习框架的音频增强的方法,所以如果你是TF的爱好者,可以使用我们介绍的两种方法进行测试,如果你是pytorch的爱好者,直接使用官方的torchaudio包就可以了。
训练 CNN 时,Memory 主要的开销来自于储存用于计算 backward 的activation,一般的 workflow 是这样的 Va...