简单地说,这个新工具能把一种框架训练的模型,转换成另一种框架所需的格式。比如说,机器学习开发者可以将PyTorch训练的模型转换到Caffe2上,减少从研究到产品化所耗费的时间。Facebook在博客中说,ONNX只是第一步,他们的目标是建立一个开放的生态,让AI开发者能在最先进的工具之间轻松流动,选择最适合自己的框架。
这部分通常可以在一个单独的进程中或在另一台机器上完成,但我们将在同一个进程中继续, 以便我们可以验证 Caffe2 和 PyTorch 是否为网络计算出相同的值: import onnx import caffe2.python.onnx.backend as onnx_caffe2_backend #加载ONNX ModelProto对象。模型是一个标准的Python protobuf对象 model = onnx....
2、你需要onnx-caffe2,一个纯Python库,为ONNX提供一个Caffe2后端。onnx-caffe2你可以用pip来安装: pipinstall onnx-caffe2 安装完成后,您可以使用Caffe2的后端: # ...continuing from aboveimportonnx_caffe2.backendasbackendimportnumpyasnp rep = backend.prepare(model, device="CUDA:0")# or "CPU"#...
Please check the detail log, Try 'atc --help' for more information E19010: Check op[AliasWithName_0]'s type[org.pytorch._caffe2::1::AliasWithName] failed, the type is unsupported. E19010: Check op[AliasWithName_1]'s type[org.pytorch._caffe2::1::AliasWithName] failed, the type ...
使用ONNX将模型转移至Caffe2和移动端 在本教程中,我们将介绍如何使用 ONNX 将 PyTorch 中定义的模型转换为 ONNX 格式,然后将其加载到 Caffe2 中。一旦进入 Caffe2,我们就可以运行模型来仔细检查它是否正确导出,然后我们展示了如何使用 Caffe2 功能(如移动导出器)在移动设备上执行模型。 在本教程中,您需要安装on...
在本教程中,我们将介绍如何使用 ONNX 将 PyTorch 中定义的模型转换为 ONNX 格式,然后将其加载到 Caffe2 中。一旦进入 Caffe2,我们 就可以运行模型来仔细检查它是否正确导出,然后我们展示了如何使用 Caffe2 功能(如移动导出器)在移动设备上执行模型。
简单地说,这个新工具能把一种框架训练的模型,转换成另一种框架所需的格式。比如说,机器学习开发者可以将PyTorch训练的模型转换到Caffe2上,减少从研究到产品化所耗费的时间。 Facebook在博客中说,ONNX只是第一步,他们的目标是建立一个开放的生态,让AI开发者能在最先进的工具之间轻松流动,选择最适合自己的框架。
第三章:PyTorch之入门强化 数据加载和处理 PyTorch小试牛刀 迁移学习 混合前端的seq2seq模型部署 保存和加载模型 第四章:PyTorch之图像篇 微调基于torchvision 0.3的目标检测模型 微调TorchVision模型 空间变换器网络 使用PyTorch进行神经传递 生成对抗示例 使用ONNX将模型转移至Caffe2和移动端 ...
在本教程中,我们将介绍如何使用 ONNX 将 PyTorch 中定义的模型转换为 ONNX 格式,然后将其加载到 Caffe2 中。一旦进入 Caffe2,我们 就可以运行模型来仔细检查它是否正确导出,然后我们展示了如何使用 Caffe2 功能(如移动导出器)在移动设备上执行模型。