CrossEntropyLoss internally applies softmax. 拓展: F.log_softmax() F.log_softmax 等价于先应用 softmax 激活函数,然后对结果取对数 log()。它是将 softmax 和log 这两个操作结合在一起,以提高数值稳定性和计算效率。具体的数学定义如下: 在代码中,F.log_softmax 的等价操作可以用以下步骤实现: 计算...
CrossEntropyLoss:交叉熵损失函数。 二. 实例 用例子来解释下CrossEntropyLoss和NLLLoss的区别,以三个样本为一个batch,任务为三分类为例。 1. input_:输入,模型的预测结果; target:真实结果、groudTruth,预测三个样本分类为类别0、2、1; 图1 2. 先对input_进行softmax,将结果映射的0~1之间的概率,每一行为一...
使用F.cross_entropy()直接可以传入参数和输入数据,而且由于F.cross_entropy() 得到的是一个向量也就是对batch中每一个图像都会得到对应的交叉熵,所以计算出之后,会使用一个mean()函数,计算其总的交叉熵,再对其进行优化。 1 2 3 import torch.nn.functionalasF loss = F.cross_entropy(input, target).mean()...
pytorch nn.crossentropyloss 公式 pytorch中的nn.CrossEntropyLoss()函数是多分类用的交叉熵损失函数,其公式为: ``` crossentropyloss=nn.CrossEntropyLoss() crossentropyloss_output=crossentropyloss(output,target) ``` 其中,output是网络的输出,size=(batch_size, class),target是数据的真实标签,是标量,size=...
在深度学习中,损失函数(Loss Function)是一个至关重要的组成部分,它用于衡量模型的预测值与真实值之间的差异。交叉熵损失(Cross Entropy Loss)是分类问题中最常用的损失函数之一。在本文中,我们将深入学习PyTorch中的交叉熵损失函数的使用,并通过代码示例来帮助理解。
一、损失函数 nn.CrossEntropyLoss() 交叉熵损失函数 nn.CrossEntropyLoss() ,结合了 nn.LogSoftmax() 和 nn.NLLLoss() 两个函数。它在做分类(具体几类)训练的时候是非常有用的。 二. 什么是交叉熵 交叉熵主要是用来判定实际的输出与期望的输出的接近程度。举个例子:在做分类训练的时候,如果一个样本属于第...
2、CrossEntropyLoss()损失函数结合了nn.LogSoftmax()和nn.NLLLoss()两个函数。它在做分类(具体几类)训练的时候是非常有用的。 3、softmax用于多分类过程中,它将多个神经元的输出,映射到(0,1)区间内,可以看成概率来理解,从而来进行多分类! 其公式如下: ...
在实现的类中,考虑到了torch.nn.CrossEntropyLoss的两个关键参数:weight和size_average。weight参数是一个张量,其维度为类别数量C,用于给不同类别的样本赋予不同的权重。size_average参数则是一个布尔值,默认为True,表示计算结果的平均值。若设置为False,则不会对损失值求平均,而是直接求和。为了...
1. **NLLLoss:** 负对数似然损失函数,着重于对模型预测与实际标签间差异的量化。2. **CrossEntropyLoss:** 交叉熵损失函数,不仅执行交叉熵计算,还内嵌了log与softmax操作。接下来,我们以三个样本为一batch进行分类任务为例,直观理解CrossEntropyLoss与NLLLoss的区别:假设输入为模型预测结果,目标...
nn.CrossEntropyLoss()函数的核心参数包括无权重、大小平均、忽略索引、可选择的减少和还原模式,以及标签平滑。在计算交叉熵损失时,函数会考虑输入的logits(模型的原始输出分数)与目标的真实标签。具体公式为:假设每个样本有n个类别,第i个样本的真实类别标签为yi,模型输出的logits为logits,其中logits[...