scatter(x, y, s=None, c=None, marker=None, cmap=None, norm=None, vmin=None, vmax=None, alpha=None, linewidths=None, verts=None, edgecolors=None, hold=None, data=None, **kwargs) 参数(Parameters)说明: x,y:array_like,shape(n,) 输入数据 s:标量或array_like,shape(n,),可选 大小...
2,scatter matplotlib.pyplot.scatter(x,y,s=None,c=None,marker=None,cmap=None,norm=None,vmin=None,vmax=None,alpha=None,linewidths=None,verts=None,edgecolors=None,*,data=None,**kwargs) x,y——设置点的位置 s——点的大小 c——点的颜色 marker——点的形状 cmap——可以用来控制颜色渐变,具体...
marker: 点的形状,如'o'表示圆圈,'^'表示三角形等。 alpha: 点的透明度,取值范围从0(完全透明)到1(完全不透明)。 绘制一系列点: 要使用scatter()函数绘制一系列点,你需要提供两个列表:x_value列表和y_value列表,分别包含每个点的x和y坐标。 import matplotlib.pyplot as plt # 定义点的坐标列表 x_values...
ax1.scatter(x,y,c = 'r',marker = 'o') #设置图标 plt.legend('x1') #显示所画的图 plt.show() 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14. 15. 16. 17. 18. 19. 20. 结果如下: 5、当scatter后面参数中数组的使用方法,如s,当s是同x大小的数组,表示x中的每个点对...
1、scatter函数原型 2、其中散点的形状参数marker如下: 3、其中颜色参数c如下: 4、基本的使用方法如下: #导入必要的模块 import numpy as np import matplotlib.pyplot as plt #产生测试数据 x = np.arange(1,10) y = x fig = plt.figure()
Matplotlib 散点图 我们可以使用 pyplot 中的 scatter() 方法来绘制散点图。 scatter() 方法语法格式如下: matplotlib.pyplot.scatter(x, y, s=None, c=None, marker=None, cmap=None, norm=N
scatter() 函数是Matplotlib中用于绘制散点图的主要方法。它的基本语法如下: scatter(x, y, s=None, c=None, marker=None, cmap=None, vmin=None, vmax=None, alpha=None, colorbar=None, **kwargs) x, y: 分别表示点的横纵坐标。 s: 点的大小。 c: 点的颜色,可以是单个颜色或颜色数组。 marker:...
**kwargs:其他自定义属性;其中标记点类型marker默认值为:“marker="circle"”,可以用“radius”定义圆的半径大小(单位为坐标轴单位)。这在Web数据化中非常有用,不同的方式,在不同的设备上的展示效果会有些许差异。 p.scatter(x, y, **kwargs)参数说明。
plt.scatter(x, y, c='b', marker='o', , cmap='RdBu', alpha=0.5,label='数据点')plt.scatter是Matplotlib库中的一个函数,用于绘制散点图。它用于显示由两个数值数组给出的数据点的二维图。这个函数非常灵活,允许您以多种方式定制散点图的样式和外观。以下是plt.scatter的一些关键参数和功能:数据点...
1、scatter函数原型 2、其中散点的形状参数marker如下: 3、其中颜色参数c如下: 4、基本的使用方法如下: #导入必要的模块 import numpy as np import matplotlib.pyplot as plt #产生测试数据 x = np.arange(1,10) y = x fig = plt.figure()