方法一:使用内置的csv库 导入csv模块:首先,需要导入Python内置的csv模块。 打开CSV文件:使用with open语句打开CSV文件,并指定文件的编码和模式。 创建CSV读取器对象:使用csv.reader()函数创建一个CSV读取器对象。 读取指定列:通过索引或列名来读取指定列的数据。 示例代码: python import csv # 打开CSV文件 with op...
支持通过列名查找特定列。 相比csv库,事半功倍。 开始pandas操作csv文件之旅: 0.csv文件预览 1.读取csv文件 import pandas as pd file="E:\data\test.csv" csvPD=pd.read_csv(file) 1. 2. 3. 4. 2.查找指定列及指定单元格 2.1指定列:通过索引指定列名为hour的列 通过索引找到列的方式:csvPD['hour'...
data = pd.read_csv('F:/Zhu/test/test.csv') 1. 2. 下面看一下pd.read_csv常用的参数: pandas.read_csv(filepath_or_buffer, sep=', ', delimiter=None, header='infer', names=None, index_col=None, usecols=None, squeeze=False, prefix=None, mangle_dupe_cols=True, dtype=None, engine=No...
df = pd.read_csv('data_with_dates.csv', parse_dates=['date']) 自定义列名 使用header参数可以自定义列名,可以指定某一行作为列名,也可以自定义列名列表。 import pandas as pd # 使用第三行作为列名 df = pd.read_csv('data.csv', header=2) ...
data = pd.read_csv('D:/jupyter/data/mydata/vertex.csv', header = None) 按行读取: importcsvwithopen('../file.csv','r')asexcelfile: reader = csv.reader(excelfile)forrowinreader:print(row) 2.在某个位置插入一列,并指定列名 scibert_df.insert(0,'id',node['true_idx']) ...
读取本地中CSV文件的指定列,并对列进行重命名,并保存回本地 原数据展示 movies.csv 操作后数据展示 new_movies.csv 代码 # -*- coding: utf-8 -*-importjsonimportpandasaspd# 所需列名和新老列名映射关系columns_json_str ='{"name":"NEW_NAME","src":"NEW_SRC"}'columns_dict = json.loads(columns...
其中,‘file.csv’ 是待读取的CSV文件的路径。读取CSV文件后,将其存储为一个DataFrame对象,这样可以方便地对数据进行操作和分析。 read_csv()函数还有一些可选参数,用于指定文件的编码、分隔符、行索引等信息。以下是一些常用的参数: sep:指定分隔符,默认为逗号。 header:指定哪一行作为列名,默认为0(第一行)。
除了io参数之外,read_csv()函数还有许多其他参数,用于控制数据的读取和解析过程。 以下是一些常用的参数: sep:用于指定字段之间的分隔符,默认为逗号。 header:用于指定哪一行作为列名,默认为第一行。 skiprows:用于跳过指定的行数。 usecols:用于选择要读取的列。
import pandas as pd # 读取数据文件 data = pd.read_csv('data.csv') # 选择某一列数据 column_data = data['column_name'] # 打印某一列数据 print(column_data) 复制代码 在上面的代码中,'data.csv’是你要读取的数据文件,'column_name’是你要读取的列名。通过这种方式,你可以读取出指定列的数据并...