pivot_table函数是pandas库中的函数,调用首先需要加载pandas库。 其功能相当于excel中的数据透视表。 其基本调用语法如下: 代码语言:javascript 代码运行次数:0 运行 AI代码解释 importpandasaspd pd.pivot_table(data:'DataFrame',values=None,index=None,columns=None,aggfunc:'AggFuncType'='mean',fill_value=None,...
pd.pivot_table(df,index=["Counterparty","Trader"],values=["Value"],columns=["Category"],aggfunc=[len,np.sum]) 上表结果中的NaN不好看,可设置fill_value=0用零替代。 代码语言:javascript 代码运行次数:0 运行 AI代码解释 pd.pivot_table(df,index=["Counterparty","Trader"],values=["Value"],col...
pivot()函数没有数据聚合功能,要想实现此功能,需要调用Pandas包中的第三个顶层函数:pivot_table(),在pandas中的工程位置如下所示: pandas | pivot_table() 如下,构造一个df实例: 调用如下操作: 参数index指明A和B为行索引,columns指明C列取值为列,聚合函数为求和,values是在两个轴(index和columns)确定后的取值...
We can also fill missing values using the fill_value parameter. >>> table = pd.pivot_table(df, values='D', index=['A', 'B'], ... columns=['C'], aggfunc=np.sum, fill_value=0) >>> table C large small A B bar one 4 5 two 7 6 foo one 4 1 two 0 6 The next example...
在Pandas中,可以利用pivot_table函数实现该功能。 二、pivot_table函数介绍 使用语法: DataFrame.pivot_table(data, values=None, index=None, columns=None, aggfunc='mean', fill_value=None, margins=False, dropna=True, margins_name='All', observed=False, ...
1. pivot_table函数简介 pivot_table函数的基本语法如下: pandas.pivot_table(data, values=None, index=None, columns=None, aggfunc='mean', fill_value=None, margins=False, dropna=True, margins_name='All', observed=False, sort=True) 主要参数说明: ...
pivot_table=pd.pivot_table(data,values='Value',index='Column1',columns='Column2',aggfunc=sum) 1. 在上面的代码中,我们使用了data作为数据源,'Value’作为需要计算的值的列名,'Column1’作为行索引,'Column2’作为列索引,aggfunc=sum表示对值进行求和。
columns=["Product"],aggfunc=[np.sum]) 然而,非数值(NaN)有点令人分心。如果想移除它们,我们可以使用“fill_value”将其设置为0。 pd.pivot_table(df,index=["Manager","Rep"],values=["Price"], columns=["Product"],aggfunc=[np.sum],fill_value=0) ...
columns=["Product"],aggfunc=[np.sum]) 1. 2. 然而,非数值(NaN)有点令人分心。如果想移除它们,我们可以使用“fill_value”将其设置为0。 pd.pivot_table(df,index=["Manager","Rep"],values=["Price"], columns=["Product"],aggfunc=[np.sum],fill_value=0) ...
pivot_table()与pivot()比较类似。其官方定义如下所示: DataFrame.pivot_table(values=None, index=None, columns=None, aggfunc='mean', fill_value=None, margins=False, dropna=True, margins_name='All') 我们依次解析: values:可选参数,用来做集合的值,其用法与pivot的values类似。默认是显示所有的值。