import pandas as pd # 我们想要将'`email`'列作为DataFrame的索引 df8 = pd.read_csv('data.csv', index_col='email') print(df8) # 或者,如果我们知道'email'列在第4列的位置,也可以这样指定 df9 = pd.read_csv('data.csv', index_col=3) print(df9) usecols 读取指定的列 usecols读取指定的列...
importpandasaspd# 读取csv文件并设置第一列为索引df=pd.read_csv('data.csv',index_col=0)print(df) 1. 2. 3. 4. 5. 在上面的代码中,我们通过read_csv方法读取了名为data.csv的csv文件,并将第一列作为索引保存到DataFrame中。接下来我们将介绍如何创建一个包含时间戳的csv文件,并使用pandas设置时间戳列...
import pandas as pd df = pd.read_csv('data/learn_pandas.csv',usecols = ['School','Grade','Name','Gender','Weight','Transfer']) print(df.Name.head()) ''' 0 Gaopeng Yang 1 Changqiang You 2 Mei Sun 3 Xiaojuan Sun 4 Gaojuan You Name: Name, dtype: object ''' 1. 2. 3. 4...
当你需要从CSV文件中导入数据到Pandas的DataFrame时,使用read_csv()函数是常规做法。在导入过程中,通过适当设置read_csv()参数,你可以控制数据加载的各个方面。 例如,以下代码导入了一个CSV文件,但告诉Pandas不创建默认索引: import pandas as pd df = pd.read_csv('your-data.csv', index_col=False) 或者,如...
pd.read_csv() 参数详解 读取CSV(逗号分割)文件到DataFrame 也支持文件的部分导入和选择迭代 更多帮助参见:http://pandas.pydata.org/pandas-docs/stable/io.html 参数: filepath_or_buffer : str,pathlib。str, pathlib.Path, py._path.local.LocalPath or any object with a read() method (such as a ...
data5= pd.read_csv('data.csv',header=None) 查看pandas官方文档发现,read_csv读取时会自动识别表头,数据有表头时不能设置 header 为空(默认读取第一行,即header=0);数据无表头时,若不设置header,第一行数据会被视为表头,应传入names参数设置表头名称或设置header=None。
df=pd.read_csv('filename.csv',encoding='utf-8',index_col=0)2.写csv不要索引 同样在生成csv...
使用pd.read_csv()函数读取下表。该函数的参数可以根据需要进行调整,常用的参数包括文件路径、分隔符、编码方式等。假设下表文件名为"table.csv",并且以逗号作为分隔符,可以使用以下代码读取: 如果下表文件中包含表头(列名),可以通过设置header参数来指定表头所在的行数。例如,如果表头在第一行,可以使用以下代...
#读取数据 df=pd.read_csv(r'/PythonTest/Data/book_douban.csv',index_col=0) #查看前十行 df.head(10) 输出结果: df.info() 输出结果: <class 'pandas.core.frame.DataFrame'> Int64Index: 60626 entries, 1 to 60670 Data columns (total 9 columns): # Column Non-Null Count Dtype --- ---...