df=pd.read_csv('data.csv',names=['Name','Age','Occupation'],dtype={'Age':int}) 忽略列,只读取特定的列: 代码语言:javascript 代码运行次数:0 运行 AI代码解释 df=pd.read_csv('data.csv',usecols=['Name','Occupation']) 3.3 处理缺失的数据 CSV文
使用pd.read_csv()函数读取下表。该函数的参数可以根据需要进行调整,常用的参数包括文件路径、分隔符、编码方式等。假设下表文件名为"table.csv",并且以逗号作为分隔符,可以使用以下代码读取: 使用pd.read_csv()函数读取下表。该函数的参数可以根据需要进行调整,常用的参数包括文件路径、分隔符、编码方式等。...
使用Pandas的read_csv函数可以方便地读取CSV文件,并将其内容加载到一个DataFrame对象中。DataFrame是Pandas中用于存储和操作表格数据的主要数据结构。 python df = pd.read_csv('your_file.csv') 其中,'your_file.csv'是你要读取的CSV文件的路径。如果文件与你的Python脚本在同一目录下,可以直接使用文件名。如果文...
df=pd.read_csv(file_path,sep=",|:|;",engine="python",header=0,encoding='gbk') print(df) # 我们说这种情况下,header为变成0,即选取文件的第一行作为表头 1. 2. 3. 4. names 没有被赋值,header 被赋值: pd.read_csv(file_path,sep=",|:|;",engine="python",header=1,encoding='gbk') ...
pd.read_csv("girl.csv") 1. 由于指定的分隔符 和 csv文件采用的分隔符 不一致,因此多个列之间没有分开,而是连在一起了。 所以,我们需要将分隔符设置成"\t"才可以。 pd.read_csv('girl.csv', sep='\t') 1. delimiter 分隔符的另一个名字,与 sep 功能相似。
pd.read_csv() 参数详解 读取CSV(逗号分割)文件到DataFrame 也支持文件的部分导入和选择迭代 更多帮助参见:http://pandas.pydata.org/pandas-docs/stable/io.html 参数: filepath_or_buffer : str,pathlib。str, pathlib.Path, py._path.local.LocalPath or any object with a read() method (such as a ...
data5= pd.read_csv('data.csv',header=None) 查看pandas官方文档发现,read_csv读取时会自动识别表头,数据有表头时不能设置 header 为空(默认读取第一行,即header=0);数据无表头时,若不设置header,第一行数据会被视为表头,应传入names参数设置表头名称或设置header=None。
index_col参数在使用pandas的read_csv函数时用于指定哪一列作为DataFrame的索引。 如果设置为None(默认值),CSV文件中的行索引将用作DataFrame的索引。如果设置为某个列的位置(整数)或列名(字符串),则该列将被用作DataFrame的索引。 import pandas as pd
用Python三行代码轻松读取CSV文件,快速上手数据操作,本视频由咕咕dovie提供,0次播放,好看视频是由百度团队打造的集内涵和颜值于一身的专业短视频聚合平台
不赞成使用:该参数会在未来版本移除。请使用pd.read_csv(...).to_records()替代。 返回一个Numpy的recarray来替代DataFrame。如果该参数设定为True。将会优先squeeze参数使用。并且行索引将不再可用,索引列也将被忽略。 squeeze: boolean, default False