4.K-Means的不足 K-Means算法的不足,都是由初始值引起的: 1)初始分类数目k值很难估计,不确定应该分成多少类才最合适(ISODATA算法通过类的自动合并和分裂,得到较为合理的类型数目k。这里不讲这个算法) 2)不同的随机种子会得到完全不同的结果(K-Means++算法可以用来解决这个问题,其可以有效地选择初始点) 算法流...
k-means 算法的工作过程说明如下:首先从n个数据对象任意选择 k 个对象作为初始聚类中心;而对于所剩下其它对象,则根据它们与这些聚类中心的相似度(距离),分别将它们分配给与其最相似的(聚类中心所代表的)聚类;然后再计算每个所获新聚类的聚类中心(该聚类中所有对象的均值);不断重复这一过程直到标准测度函数开始收敛...
random_state=0)# 对数据进行拟合并获取聚类标签labels = kmeans.fit_predict(df[['X','Y']])# 将聚类标签添加到数据框中df['Cluster'] = labels# 打印带有聚类标签的数据框print(df)# 可视化结果plt.scatter(df['X'], df['Y'], c=df['Cluster'], cmap='viridis')# 为每个数据点添加标签(使用...
0].A ==i)[0], :]#在当前簇运用kmeans算法,分为两个簇,返回簇的聚类中心和每个样本点距离其所属簇的中心的距离centroid_mat, split_cluster_ass = Kmeans(point_in_current_cluster, 2, dist_measure)#计算被划分的簇,划分后的损失sse_split = sum(split_cluster_ass...
K-Means均值聚类分析是一种无监督学习算法,用于将数据集分成k个簇(cluster),其中每个簇的成员在某种意义上是相似的。算法的目标是找到质心(centroid),使得每个点到其最近质心的距离之和最小。通俗讲法就是:给定一组数据,如何对这些数据进行分类,分几类是最恰当的。以下是进行k均值聚类分析的一般步骤:K-...
三,K-means聚类示例 图a表达了初始的数据集,假设k=2。 图b,我们随机选择了两个类所对应的类别质心,即图中的红色质心和蓝色质心,然后分别求样本中所有点到这两个质心的距离,并标记每个样本的类别为与该样本距离最小的质心的类别。
一、k-means聚类算法 k-means聚类属于比较基础的聚类算法,它的算法步骤如下 算法步骤: (1) 首先我们选择一些类/组等数据,首先确定需要分组的数量k,并随机初始化数据中的K个中心点(中心点表示每种类别的中心,质心)。 (2) 对于数据集中的每个数据点计算这个数据点到中心点的距离,数据点距离哪个中心点最近就划分...
一、基于原生Python实现KMeans(K-means Clustering Algorithm) KMeans 算法是一种无监督学习算法,用于将一组数据点划分为多个簇(cluster)。这些簇由数据点的相似性决定,即簇内的数据点相似度高,而不同簇之间的相似度较低。KMeans 算法的目标是最小化簇内的方差,从而使得同一簇内的数据点更加紧密。 KMeans算法的...
sklearn.cluster.KMeans(n_clusters=K) 1.n_cluster:聚类个数(即K),默认值是8。 2.init:初始化类中心的方法(即选择初始中心点的根据),默认“K-means++”,其他可选参数包括“random”。 3.n_init:使用不同类中心运行的次数,默认值是10,即算法会初始化10次簇中心,然后返回最好的一次聚类结果。
一、KMeans算法简介 KMeans是一种无监督学习的聚类算法,它的核心思想是将n个观测值划分为k个聚类,使得每个观测值属于离其最近的均值(聚类中心)对应的聚类,从而完成数据的分类。KMeans算法具有简单、高效的特点,在数据挖掘、图像处理、机器学习等领域有广泛应用。 二、sklearn中的KMeans 在Python的sklearn库中,KMea...