Last update on January 06 2025 13:41:25 (UTC/GMT +8 hours) Write a Python program to return the sum of all divisors of a number. Sample Solution: Python Code: defsum_div(number):divisors=[1]foriinrange(2,number):if(number%i)==0:divisors.append(i)returnsum(divisors)print(sum_div(...
number = int(input("Enter a positive integer: ")) print(f"The divisors of {number} are: {find_divisors(number)}") except ValueError as e: print(e) 扩展功能 在函数中增加更多功能,如统计整除数的个数或判断数字是否为质数(质数只有1和其本身两个整除数)。 def find_divisors_and_check_prime(n...
return divisors if n % divisor == 0: divisors.append(divisor) return find_divisors(n, divisor + 1, divisors) number = 28 print(f"The divisors of {number} are: {find_divisors(number)}") 在这段代码中,我们定义了一个递归函数find_divisors,它接收三个参数:n是我们要找约数的数,divisor是当前...
一个数a的约数是指能够整除a的数b,其中b也是整数。例如,6的约数有1、2、3和6。 Python代码示例 下面是一个简单的Python函数,用来求一个数的所有约数: deffind_divisors(num):divisors=[]foriinrange(1,num+1):ifnum%i==0:divisors.append(i)returndivisors number=12result=find_divisors(number)print(f"...
number=36divisors_of_36=get_divisors_optimized(number)print(f"{number}的约数是:{divisors_of_36}") 1. 2. 3. 输出: 36的约数是: [1, 2, 3, 4, 6, 9, 12, 18, 36] 1. 五、序列图展示 以下是获取约数的过程示意图: DivisorListProgramUserDivisorListProgramUseralt[能被整除]输入整数n初始化...
divisor_sum = sum_of_divisors(number)return"perfect"ifdivisor_sum == numberelse"abundant"ifdivisor_sum > numberelse"deficient" 优化点 ✅使用lru_cache进行缓存:适用于重复计算的情况(如批量分类)。 ✅代码结构清晰:把求因子和封装到sum_of_divisors()里,使classify()更易读。
The divisors of a number are an important property that has applications in cryptography and other areas. Python has had a function for calculating the greatest common divisor (GCD) of two numbers for a long time: Python >>> import math >>> math.gcd(49, 14) 7 The GCD of 49 and ...
importmathfrommultiprocessingimportPooldefis_perfect_number(n):ifn<2:returnFalsesum_of_divisors=1for...
In Python, the number data type is used to store numeric values. Numbers in Python are an immutable data type. Being an immutable data type means that if we change the value of an already allocated number data type, then that would result in a newly allocated object. In this module, ...
Returns a list of ALL divisors of num (including 1 and num). Parameters: num – An integer for which divisors are needed. Returns: A list [d1,d2,...dn] of divisors of num phi(num) Returns the number of totatives of num