1 crop 方法函数原型为:Image.crop(box=None)Returns a rectangular region from this image. The box is a 4-tuple defining the left, upper, right, and lower pixel coordinate.This is a lazy operation. Changes to the source image may or may not be reflected in the cropped image. To break t...
from PIL import Image image = Image.open("唤醒手腕.jpg") image_crop = image.crop(box=(300, 300, 800, 700)) # image_crop.show() print('before resize: ', image.size) image_resize = image.resize((500, 400), resample=Image.LANCZOS, box=(100, 100, 1200, 800), reducing_gap=5.0)...
(input_path) resized_image = image.resize((width, height), Image.ANTIALIAS) resized_image.save(output_path) def crop_image(input_path, output_path, left, top, right, bottom): image = Image.open(input_path) cropped_image = image.crop((left, top, right, bottom)) cropped_image.save(...
确保你的Python环境中已配置若干必要的依赖库,比如numpy和matplotlib。 使用crop_img进行图像裁剪 以下是一个简单的代码示例,展示如何使用Halcon库的crop_img函数进行图像裁剪。 importHDevelopExportimportmatplotlib.pyplotasplt# 加载Halcon库hObject=HDevelopExport.load_image('your_image.png')# 定义裁剪区域left=50top...
二、Image模块 三、format类 四、Mode类 五、convert类 六、size类 七、Palette类 八、Info类 九、new类 十、Copy 类 十一、Crop类 十二、Paste类 十三、Filter类 十四、Blend类 十五、Split 十六、Composite类 十七、Eval类 十八、Merge类 ...
The portion of the image between the start and end coordinates is returned as a truncated array object. For example: import cv2 image = cv2.imread(r"C:\file\path\imagename.png") y=0 x=0 h=300 w=510 crop_image = image[x:w, y:h] cv2.imshow("Cropped", crop_image) cv2.waitKey...
Returns: An Image object. 知道矩形的左上角的坐标和右下角的坐标,即可构造box,例如下面的代码 box = (100, 100, 400, 400) region= im.crop(box) 知道如何提取除ROI时,上面例子为 region,保存ROI到图像则使用类 Image 的 save 方法 region.save(filename) ...
im_c = im.crop((175,75,320,200)) # crop the rectangle given by (left, top, right, bottom) from the image im_c.show() 下图显示了使用前面代码创建的裁剪图像: 调整图像大小 为了增加或减少图像的大小,我们可以使用resize()函数,该函数分别对图像进行内部上采样或下采样。这将在下一章详细讨论。
class Crop(object):def __init__(self, min_size_ratio, max_size_ratio=(1, 1)):self.min_size_ratio = np.array(list(min_size_ratio))self.max_size_ratio = np.array(list(max_size_ratio))def __call__(self, X, Y):size = np.array(X.shape[:2])mini = self.min_size_ratio * ...
self.width, self.height = self.image.size self.imscale = 1.0 # scale for the canvaas image self.delta = 1.3 # zoom magnitude # Put image into container rectangle and use it to set proper coordinates to the image self.container = self.canvas.create_rectangle(0, 0, self.width, self.he...