一、基于原生Python实现KMeans(K-means Clustering Algorithm) KMeans 算法是一种无监督学习算法,用于将一组数据点划分为多个簇(cluster)。这些簇由数据点的相似性决定,即簇内的数据点相似度高,而不同簇之间的相似度较低。KMeans 算法的目标是最小化簇内的方差,从而使得同一簇内的数据点更加紧密。 KMeans算法的...
我们对数据集进行了预处理,使用标准化方法将数据的均值转化为0,方差为1,以便更好地应用K均值聚类算法。 我们定义了名为kmeans的函数,该函数实现了K均值聚类算法的主要步骤。其中,X是特征矩阵,K是簇的数量,max_iters是最大迭代次数。...
1import numpy as np 2 3defkmeans_xufive(ds, k): 4"""k-means聚类算法 5 6 k - 指定分簇数量 7 ds - ndarray(m, n),m个样本的数据集,每个样本n个属性值 8 """ 910 m, n = ds.shape # m:样本数量,n:每个样本的属性值个数11 result = np.empty(m, dtype=...
其他分类这里的参数需要调试model = KMeans(n_clusters=k)# 训练模型model.fit(dataset)# 预测全部数据label = model.predict(dataset)print(label)defclustering_indicators(labels_true, labels_pred):iftype(labels_true[0]) !
scikti-learn 将机器学习分为4个领域,分别是分类(classification)、聚类(clustering)、回归(regression)和降维(dimensionality reduction)。k-means均值算法虽然是聚类算法中比较简单的一种,却包含了丰富的思想内容,非常适合作为初学者的入门习题。 关于k-means 均值聚类算法的原理介绍、实现代码,网上有很多,但运行效率似乎...
1. 以下code来自于:https://mubaris.com/2017/10/01/kmeans-clustering-in-python/ #reference: https://mubaris.com/2017/10/01/kmeans-clustering-in-python/fromcopyimportdeepcopyimportnumpy as npimportpandas as pdfrommatplotlibimportpyplot as plt#plt.rcParams['figure.figsize'] = (16, 9)#plt....
scikti-learn 将机器学习分为4个领域,分别是分类(classification)、聚类(clustering)、回归(regression)和降维(dimensionality reduction)。k-means均值算法虽然是聚类算法中比较简单的一种,却包含了丰富的思想内容,非常适合作为初学者的入门习题。 关于k-means 均值聚类算法的原理介绍、实现代码,网上有很多,但运行效率似乎...
Clustering (聚类)是常见的unsupervised learning (无监督学习)方法,简单地说就是把相似的数据样本分到一组(簇),聚类的过程,我们并不清楚某一类是什么(通常无标签信息),需要实现的目标只是把相似的样本聚到一起,即只是利用样本数据本身的分布规律。 聚类算法可以大致分为传统聚类算法以及深度聚类算法: ...
我们将在下一节中分开实现K-means算法的两个阶段。 1.1.1 找到最近的聚类中心 在K-means算法的“簇分配”阶段找到最近的聚类中心,算法把每个训练样本 x ( i ) x^{(i)} x(i)分配给其最接近的聚类中心,给出当前聚类中心位置。具体来说,对于每个样本 i i i ...
K-Means Clustering is one of the popular clustering algorithm. The goal of this algorithm is to find groups(clusters) in the given data. In this post we will implement K-Means algorithm using Python from scratch.