如果类别特征进行embedding之后的特征加权,比如embedding为256维,则我们对embedding的结果进行0~1归一化之后,每个embedding维度都乘以 根号1/256,从而将这个类别全部的距离计算贡献规约为1,避免embedding size太大使得kmeans的聚类结果非常依赖于embedding这个本质上是单一类别维度的特征。 5.5 特征的选择
2. 引用Python库将样本分为两类(k=2),并绘制散点图: #只需将X修改即可进行其他聚类分析 import matplotlib.pyplot as plt from sklearn.cluster import KMeans kemans=KMeans(n_clusters=2) result=kemans.fit_predict(X) #训练及预测 print(result) #分类结果 plt.rcParams['font.family'] = ['sans-s...
一、基于原生Python实现KMeans(K-means Clustering Algorithm) KMeans 算法是一种无监督学习算法,用于将一组数据点划分为多个簇(cluster)。这些簇由数据点的相似性决定,即簇内的数据点相似度高,而不同簇之间的相似度较低。KMeans 算法的目标是最小化簇内的方差,从而使得同一簇内的数据点更加紧密。 KMeans算法的...
df = pd.DataFrame(data)# 定义K-means模型,其中k=2kmeans = KMeans(n_clusters=2, random_state=0)# 对数据进行拟合并获取聚类标签labels = kmeans.fit_predict(df[['X','Y']])# 将聚类标签添加到数据框中df['Cluster'] = labels# 打印带有聚类标签的数据框print(df)# 可视化结果plt.scatter(df[...
上式的代价函数无法用解析的方法最小化,只能有迭代的方法。k-means算法是将样本聚类成 k个簇(cluster),其中k是用户给定的,其求解过程非常直观简单,具体算法描述如下: 1、随机选取 k个聚类质心点 2、重复下面过程直到收敛 { 对于每一个样例 i,计算其应该属于的类: ...
K-Means聚类 层次聚类 DBSCAN Affinity Propagatio MeanShift 2.常见聚类算法 聚类算法在Scikit-Learn机器学习包中,主要调用sklearn.cluster子类实现,下面对常见的聚类算法进行简单描述,后面主要介绍K-Means算法和Birch算法实例。 (1) K-Means K-Means聚类算法最早起源于信号处理,是一种最经典的聚类分析方法。它是一种...
另外,可以通过python内置的sklearn库实现好的kmeans算法,对鸢尾花数据集进行聚类分析。 代码如下: import matplotlib.pyplot as plt import numpy as np from sklearn.cluster import KMeans from sklearn.datasets import load_iris iris = load_iris() ...
进行k-means聚类 from sklearn.cluster import KMeanskmeans = KMeans(n_clusters=3) # n_clusters=3 表示聚成3类result = kmeans.fit(df)result 与随机森林,决策树等算法一样,KMeans函数中的参数众多,这里不具体解释了,可查阅官方文档 .join()表示横向拼接 # 对分类结果进行解读model_data_l = df....
```python import numpy as np from sklearn.cluster import KMeans from sklearn import datasets import matplotlib.pyplot as plt # 生成示例数据 X, _ = datasets.make_blobs(n_samples=300, centers=4, cluster_std=0.60, random_state=0)
一、导入需要的Python包 1. K-means在sklearn.cluster中,用到K-means聚类时,我们只需: from sklearn.cluster import KMeans 1. K-means在Python的三方库中的定义是这样的: class sklearn.cluster.KMeans(n_clusters=8, init=’k-means++’, n_init=10, max_iter=300, tol=0.0001, precompute_distances...