对DataFrame 使用 apply() 按列操作(默认) column_sums = df.apply(lambda x: x.sum(), axis=0) print("每列的和:") print(column_sums) 按行操作 row_sums = df.apply(lambda x: x.sum(), axis=1) print("\n每行的和:") print(row_sums) 使用自定义函数 def custom_function(x): return ...
orders['仓库分类'] = orders.apply(lambda x: '特定库龄'if isClearance(x['付款时间'], x['产品代码'], clearance_goods) != None else x['仓库分类'], axis=1) # 特定库龄处理 orders['仓库分类'] = orders.apply(lambda x: '特定库龄' if (x['发运仓库'] == 'GSE [古斯美东仓]' and ...
Pandas 的很多对象都可以使用apply()来调用函数,如 Dataframe、Series、分组对象、各种时间序列等。 2.语法结构 apply()使用时,通常放入一个lambda函数表达式、或一个函数作为操作运算,官方上给出DataFrame的apply()用法: DataFrame.apply(self, func, axis=0, raw=False, result_type=None, args=(), **kwargs)...
df.apply(func, axis=1)。 2、如何设置apply函数的轴向? 答:通过设置axis参数来指定轴向,0表示行方向,1表示列方向,默认为0。 3、如何使用apply函数处理缺失值? 答:可以结合fillna方法使用apply函数处理缺失值。df.apply(lambda x: x.fillna(0), axis=0)。 4、如何使用apply函数进行数据转换? 答:可以定义一...
apply(lambda x:x['amount_cumsum']/amount_total,axis=1) #前xx名用户的总贡献率 user_cumsum.tail() 代码语言:javascript 代码运行次数:0 运行 AI代码解释 user_cumsum['prop'].plot() 由图分析可知,前20000名用户贡献总金额的40%,剩余3500名用户贡献了60%。(2/8原则) 用户消费行为 1.首购时间 代码...
DataFrame.apply(func,axis=0,raw=False,result_type=None, args=(),**kwargs) 1. 2. 参数: func :function 应用到每行或每列的函数。 axis :{0 or 'index', 1 or 'columns'}, default 0 函数应用所沿着的轴。 0 or index : 在每一列上应用函数。
apply函数默认的是axis为 axis=0 1 2 3 4 5 6 7 8 9 10 11 12 data= [ [1,2,3], [5,4,1], [3,2,2] ] df = pd.DataFrame(data,columns=['A','B','C'])f = lambda x: (x - np.min(x)) / (np.max(x) - np.min(x)) print(...
apply函数是pandas里面所有函数中自由度最高的函数。该函数如下: DataFrame.apply(func, axis=0, broadcast=False, raw=False, reduce=None, args=(), **kwds) 该函数最有用的是第一个参数,这个参数是函数,相当于C/C++的函数指针。 这个函数需要自己实现,函数的传入参数根据axis来定,比如axis = 1,就会把一...
= row.col2[idx] return valuedf['col3' ] = df.apply(f,axis=1)...
grouped = df.groupby(by=None, axis=0, level=None, as_index=False, sort=True, group_keys=True, squeeze=False, observed=False)参数解释 by参数用于指定要进行分组的列名,可以是一个列名或者多个列名的列表axis参数用于指定分组方向,0表示行方向,1表示列方向level参数用于指定分组级别as_index参数用于指定...