By using PySparkwithColumn()on a DataFrame, we can cast or change the data type of a column. In order tochange data type, you would also need to usecast()function along with withColumn(). The below statementcha
In Pyspark we can use theF.whenstatement or aUDF.This allows us to achieve the same result as above. 在Pyspark中,我们可以使用F.when语句或UDF这使我们可以获得与上述相同的结果。 from pyspark.sql import functions as Fdf = df.withColumn('is_police',\ F.when(\ F.lower(\ F.col('local_sit...
The above statement changes column “dob” to “DateOfBirth” on PySpark DataFrame. Note thatwithColumnRenamedfunction returns a new DataFrame and doesn’t modify the current DataFrame. 2. PySpark withColumnRenamed – To rename multiple columns To change multiple column names, we should chainwithColum...
dtypes if item[1].startswith('string')] for cols in str_cols: data = data.withColumn(cols, trim(data[cols])) 任务3 对于超过阈值的含有空值的列进行删除 找到含有空值的column,并且统计他们的数量。此处请注意isnan和isNull的区别 data.select([count(when(isnan(c)|col(c).isNull(),c)).alias...
spark_df = spark_df.withColumn("ingestion_date_time", current_timestamp()) spark_df.show() Phase 3: SQL Server Configuration and Data Load After the transformation process is complete, we need to load the transformed data into a table in the SQL Server database. We can achieve this by ...
// insertStatement.setString(6, record.Date) // insertStatement.executeUpdate() // insertStatement.close() // }) // connection.close() // }) // println("数据写入成功") //插入数据速度较慢,用批处理 import spark.implicits._ if(!order1.isEmpty()) { ...
The Import statement is to be used for defining the pre-defined function over the column. b.withColumn("Applied_Column",lower(col("Name"))).show() The with Column function is used to create a new column in a Spark data model, and the function lower is applied that takes up the column...
基于pyspark框架创建动态case when语句将map_data转换为case语句:
from money_parser import price_str money_convert = udf( lambda x: Decimal(price_str(x)) if x is not None else None, DecimalType(8, 4), ) df = df.withColumn("spend_dollars", money_convert(df.spend_dollars)) # Code snippet result: +---+---+---+ | date|customer_id|spend_doll...
from money_parser import price_str money_convert = udf( lambda x: Decimal(price_str(x)) if x is not None else None, DecimalType(8, 4), ) df = df.withColumn("spend_dollars", money_convert(df.spend_dollars)) # Code snippet result: +---+---+---+ | date|customer_id|spend_doll...