from pyspark.sql.functions import udf from pyspark.sql.types import StringType #函数返回值的类型,要注意原来的数据类型是什么,注意保持一致 df21 = df.select("tenure") def avg_(x): if x >= 30: return "yes" else: return "no" func = udf(avg_,returnType=StringType()) #注册函数 df22 =...
from pyspark.sql.functions import col df_customer.select( col("c_custkey"), col("c_acctbal") ) You can also refer to a column using expr which takes an expression defined as a string:Python Копирај from pyspark.sql.functions import expr df_customer.select( expr("c_custkey...
We read every piece of feedback, and take your input very seriously. Include my email address so I can be contacted Cancel Submit feedback Saved searches Use saved searches to filter your results more quickly Cancel Create saved search Sign in Sign up Reseting focus {...
'X', 'Y'] data = data.select([column for column in data.columns if column not in drop_list]) from pyspark.ml.feature import RegexTokenizer, StopWordsRemover, CountVectorizer from pyspark.ml.classification import LogisticRegression # regular expression tokenizer regexTokenizer = RegexTokenizer(inputC...
Parameters: cols –list of columns to group by.每个元素应该是一个column name (string)或者一个expression (Column)。 >>> df.groupBy().avg().collect() [Row(avg(age)=3.5)] >>> sorted(df.groupBy('name').agg({'age': 'mean'}).collect()) [Row(name=u'Alice', avg(age)=2.0), Row...
To select a column from the data frame, use the apply method: ageCol = people.age 一个更具体的例子 #To create DataFrame using SQLContextpeople = sqlContext.read.parquet("...") department= sqlContext.read.parquet("...") people.filter(people.age> 30).join(department, people.deptId == ...
The in-built function,when, can be utilized as an equivalent to acaseexpression. from pyspark.sql import functions as f df.select(df.key,f.when(df.user_id.isin(['not_set', 'n/a', 'N/A']),None).otherwise(df.user_id)).show() ...
.select("MSRP", "Invoice") .summary('max','min') ) Lazy execution – SAS “run” statement vs PySpark actions The lazy execution model in Spark is the foundation of so many optimizations, which enables PySpark to be so much faster than SAS. Believe it or not, SAS also has support...
RPA使用“if-then”方法识别潜在的欺诈行为并将其标记给相关部门。例如,如果在短时间内进行了多次交易,...
select * from emp; select deptno,count(1) from emp group by deptno; azkaban上执行hive指令 ==方法一==vi test.sql select deptno,count(1) from emp group by deptno; --hive.flownodes: - name: jobA type: command config: command: hive -f /home/jungle/sql/test.sql ==方法二==...