我们可以看到,PV-RCNN是一个二阶段的网络,与其他二阶段网络一样,都是第一阶段先提取出ROI,然后第二阶段对ROI进行精调获取更为准确的Bounding Box。 PV-RCNN的第一阶段没有什么特别的,与SECOND以及Voxel-RCNN几乎一致。具体来说就是先将点云体素化,然后通过稀疏卷积对体素进行8倍下采样,然后在z向进行压缩得到...
具体而言,PV-RCNN算法具备以下重要结论:1.PV-RCNN成功利用了基于体素和基于点的方法,以进行3D点云特征学习,从而有效提升了3D物体检测性能。 2.PV-RCNN算法通过引入体素集合抽象和RoI-Grid池化等关键技术,实现了在内存消耗可控的情况下保持检测性能的目标。 3.在KITTI 3D检测基准测试和Waymo Open数据集上的广泛实验...
由于实验室机器有限,我们并没有太多资源(与时间)投入到比赛中,我们提交的方法基本就是裸的论文原版PV-RCNN+一些简单trick,在仅使用LiDAR点云作为输入的情况下,我们最终取得了3D Detection、3D Tracking、Domain Adaptation三项比赛中单模态算法三项第一,所有(不限传感器)算法三项第二。 在KITTI/Waymo上的出色性能,证明...
pv rcnn 框图读取数据->点云转voxel(DemoDataset)1.1 kitti 点云数据格式:kitti数据保存在bin或npy文件,每个bin或npy表示一帧点云,可以理解为一张图片;点云存在n4维数据,n表示点云中点的个数,4表示x、y、z和反光度。1.2 common_utils.mask_points_by_range剔除一定范围外的点;...
论文《PV-RCNN: Point-Voxel Feature Set Abstraction for 3D Object Detection》是一篇关于三维物体检测的论文。该论文提出了一种名为PV-RCNN的方法,用于从点云数据中进行三维物体检测,并在各种应用中取得了优秀的性能。 论文的主要目的是解决点云数据中的三维物体检测问题。点云是由激光雷达或深度摄像头等传感器获...
文章标题:PV-RCNN:三维对象检测的点与体素融合框架 PV-RCNN论文介绍了一种结合点和体素方法优势的三维目标检测框架。主要贡献包括:1、提出了一种融合点与体素优势的框架PV-RCNN,通过在可管理内存消耗下提升三维目标检测算法性能。2、提出一种体素到关键点编码方法,将一帧内的多尺度体素特征编码为...
pvrcnn可视化 decision boundary 可视化 在不同初始化条件下,同一神经网络经过两次训练可以得到相同的结果吗? CVPR 2022的一篇研究通过将决策边界(Decision Boundary)可视化的方法,给出了答案—— 有的容易,有的很难。 例如,从下面这张图来看,研究人员就发现,ViT比ResNet要更难复现(两次训练过后,显然ViT决策边界的...
于是PV-RCNN来了,表示你们看看我怎么做的。我第一阶段还是用VoxelNet来做提取特征 + 预测proposals. 在第二阶段,重制重点区域/foreground points/proposals各自的local特征时,我不像Point RCNN一样aggregate neighbor点的特征,也不像Fast RCNN一样直接索对应voxel的特征,而是 1. Voxel Set Abstraction (VSA):用key...
NAME: PVRCNN VFE: NAME: MeanVFE BACKBONE_3D: NAME: VoxelBackBone8x MAP_TO_BEV: NAME: HeightCompression NUM_BEV_FEATURES: 256 BACKBONE_2D: NAME: BaseBEVBackbone LAYER_NUMS: [5, 5] LAYER_STRIDES: [1, 2] NUM_FILTERS: [128, 256] UPSAMPLE_STRIDES: [1, 2] NUM_UPSAMPLE_FILTERS: [256...
PV-RCNN通过体素化及特征提取,将点云空间划分为L * W * H的体素格子,非空体素的特征为内部所有点特征的均值。采用稀疏卷积对特征进行降采样,得到不同尺度的特征。8倍下采样的特征通过Z轴投影得到2D特征图,基于锚基方法预测出3D候选框。实验表明,这种候选框生成方式具有更好的效果。引入关键点是...