SECOND、PointPillar),基于Voxel的方法比较高效,其多尺度的特征可以生成较高质量的候选框,但是在点云转换成Voxel时会丢失精度,基于Point的方法精度高但是有较高的计算成本,因此作者结合基于Point和基于Voxel方法的优势,提出新的两阶段目标检测框架PV-RCNN。
PV-RCNN为结合这两种方法的算法,采用multi-scale的方法获得由voxel_based方法得到的高质量的proposals,然后再利用Point_based的方法获得精细的局部信息。 The principle of PV-RCNN lies in the fact that the voxel-based operation efficiently encodes multi-scale feature representations and can generate high-quali...
作为3D目标检测框架之一,PointVoxel-RCNN(PV-RCNN)用于从点云中精确检测3D物体。该方法深度整合了3D体素卷积神经网络(CNN)和基于PointNet的集合抽象,以学习更具判别性的点云特征。它充分利用了3D体素CNN的高效学习和高质量提议,以及PointNet网络的灵活感受野。具体而言: 该方法通过一个体素集合抽象模块,将3D场景总结为...
我们可以看到,PV-RCNN是一个二阶段的网络,与其他二阶段网络一样,都是第一阶段先提取出ROI,然后第二阶段对ROI进行精调获取更为准确的Bounding Box。 PV-RCNN的第一阶段没有什么特别的,与SECOND以及Voxel-RCNN几乎一致。具体来说就是先将点云体素化,然后通过稀疏卷积对体素进行8倍下采样,然后在z向进行压缩得到...
于是PV-RCNN来了,表示你们看看我怎么做的。我第一阶段还是用VoxelNet来做提取特征 + 预测proposals. 在第二阶段,重制重点区域/foreground points/proposals各自的local特征时,我不像Point RCNN一样aggregate neighbor点的特征,也不像Fast RCNN一样直接索对应voxel的特征,而是 1. Voxel Set Abstraction (VSA):用key...
论文《PV-RCNN: Point-Voxel Feature Set Abstraction for 3D Object Detection》是一篇关于三维物体检测的论文。该论文提出了一种名为PV-RCNN的方法,用于从点云数据中进行三维物体检测,并在各种应用中取得了优秀的性能。 论文的主要目的是解决点云数据中的三维物体检测问题。点云是由激光雷达或深度摄像头等传感器获...
这篇论文介绍了PV-RCNN算法,它是一种新颖的点-体积综合网络框架,专用于解决3D物体检测问题。PV-RCNN算法的核心步骤包括以下几个: 1.体素集合抽象:首先,将整个3D场景通过3D体素CNN转换为体素表示。然后,通过体素集合抽象模块,将这些体素编码为一组关键点特征。这些关键点特征既包括了准确的位置信息,又包含了场景的...
PV-RCNN 3D物体检测框架,包含了Voxel-to-keypoint Scene Encoding和Keypoint-to-grid RoI Feature Abstraction两部分。 (1) 我们提出了Voxel Set Abstraction操作,将Sparse Convolution主干网络中多个scale的sparse voxel及其特征投影回原始3D空间,然后将少量的keypoint (从点云中sample而来) 作为球中心,在每个scale上去...
51CTO博客已为您找到关于pvrcnn可视化的相关内容,包含IT学习相关文档代码介绍、相关教程视频课程,以及pvrcnn可视化问答内容。更多pvrcnn可视化相关解答可以来51CTO博客参与分享和学习,帮助广大IT技术人实现成长和进步。
PV-RCNN通过体素化及特征提取,将点云空间划分为L * W * H的体素格子,非空体素的特征为内部所有点特征的均值。采用稀疏卷积对特征进行降采样,得到不同尺度的特征。8倍下采样的特征通过Z轴投影得到2D特征图,基于锚基方法预测出3D候选框。实验表明,这种候选框生成方式具有更好的效果。引入关键点是...