但是传统比例-积分-微分(Proportion Integral Derivative,PID)控制器存在参数整定困难,不能在线实时调整以及面对复杂非线性系统时应用效果不佳等问题,提出一种基于粒子群算法(Particle Swarm Optimization,PSO)优化的反向传播(Back Propagation,BP)神经网络PID控制方法。将BP神经网络与PID控制器相结合,利用BP神经网络的自适...
但是传统比例-积分-微分(Proportion Integral Derivative,PID)控制器存在参数整定困难,不能在线实时调整以及面对复杂非线性系统时应用效果不佳等问题,提出一种基于粒子群算法(Particle Swarm Optimization,PSO)优化的反向传播(Back Propagation,BP)神经网络PID控制方法。将BP神经网络与PID控制器相结合,利用BP神经网络的自适...
但是传统比例-积分-微分(Proportion Integral Derivative,PID)控制器存在参数整定困难,不能在线实时调整以及面对复杂非线性系统时应用效果不佳等问题,提出一种基于粒子群算法(Particle Swarm Optimization,PSO)优化的反向传播(Back Propagation,BP)神经网络PID控制方法。将BP神经网络与PID控制器相结合,利用BP神经网络的自适...
提出了一种基于粒子群优化(PSO)算法,BP神经网络及比例积分微分(PID)控制的复合算法的注塑机料筒温度预测模型,即PSO-BP-PID神经网络模型,并进行了仿真研究.结果表明:使用PSO算法确定该模型的输出权重,并且对混合核函数参数进行优化升级;在模型训练过程中,使用更大的容许度处理正误差,保证预测误差始终处于正值,使预测...
经过改进的PSO-BP神经网络对PID参数进行优化的主要步骤为:将BP神经网络的初始权值用改进后的粒子群算法优化,即从最优粒子向量中恢复出神经网络的权值参数矩阵,在此基础上通过BP神经网络在线继续优化调整权值,直到权值最优或满足设置的隐藏的最大时间,完成对PID控制器的3个参数的调节。
摘要:PID控制器是过程控制中应用最为广泛的控制器,而传统PID控制器参数整定难以达到最优状态,同时,存在控制结果超调量过大、调节时间偏长等缺点,因此,将变异粒子群优化算法(Mutation Particle Swarm Optimization,MPSO)运用于BP-PID的参数整定过程中,设计了一种高效、稳定的自适应控制器。考虑MPSO的变异机制,以种群...
本设计正是利用BP神经网络PID控制器对一个单闭环调速系统进行仿真研究,并和常规的PID控制进行对比,从而得出BP神经网络PID控制器具有较强的自整定、自适应的优点。
2.1 bp时序、回归预测和分类 2.2 ENS声神经网络时序、回归预测和分类 2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类 2.4 CNN/TCN卷积神经网络系列时序、回归预测和分类 2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类 2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测...
Key words :PID control ;BP neural network ;PSO algorithm 0 引 言 PID 控制是最常用的工程过程控制方法,该方法将PID 偏差的比例㊁积分和微分组合成线性控制量,对被控对象进行有效的控制[1]㊂PID 控制器具有结构简单㊁实现容易㊁控制效果好,对模型误差具有鲁棒性等优点,广泛应用于轻工㊁冶金㊁电力和...
基才PSO—BP神经网络的PID控制器参数优化方法