结果表明在大部分数据集上FLAN优于GPT-3,甚至优于GPT-3的小样本学习(专指Demonstration Learning),特别地,FLAN在容易表示成Instruction的任务(NLI,QA)中非常有效,在补全句子(语言建模)这类任务(常识推理,共指消解)中并不是很有效。 SPoT: Better Frozen Model Adaptation through Soft Prompt Transfer – 10.15 ar...
众所周知,GPT-3 不做进一步地精调,只是在 inference 时候,在开头提供一些 examples (instructions) 和 prompt,称作 in-context learning;但是这篇工作是要做精调的,把类似的 instruction 作为 tuning 时候的训练数据。 GPT-3 是单任务的,而这篇工作在 tuning 阶段使用多任务,每个任务都人工设计了一个 instruction...
来自Google的FLAN模型[6]和HuggingFace的T0模型[7],是两个同时期的工作,均受到了GPT-3的启发,即:给定指令(instruction)和少量示例进行in-context learning。 打开网易新闻 查看精彩图片 FLAN模型属于Instruction Tuning(如上图),即:将包含prompt的数据集进行多任务学习,在下游未见任务进行Zero-Shot性能测试。 刘鹏飞博...
众所周知,GPT-3 不做进一步地精调,只是在 inference 时候,在开头提供一些 examples (instructions) 和 prompt,称作 in-context learning;但是这篇工作是要做精调的,把类似的 instruction 作为 tuning 时候的训练数据。 GPT-3 是单任务的,而这篇工作在 tuning 阶段使用多任务,每个任务都人工设计了一个 instruction...
来自Google的FLAN模型[6]和HuggingFace的T0模型[7],是两个同时期的工作,均受到了GPT-3的启发,即:给定指令(instruction)和少量示例进行in-context learning。 FLAN模型属于Instruction Tuning(如上图),即:将包含prompt的数据集进行多任务学习,在下游未见任务进行Zero-Shot性能测试。
Learning to Recall(2020)的基本思路也是在隐空间学习prompt模板中各个token的embedding,在此基础上,本文提出使用一些文本prompt模板进行初始化,也就是隐空间prompt包含的单词数量、位置以及初始化参数都用一个人工定义好的文本prompt,然后在此基础上进行finetune得到更好的prompt。 GPT Understands, Too(2021)采用的思路...
Chain-of-Thought 3.1.1:将Chain-of-Thought prompting扩展到多语言场景,代表技术有XLT(Cross-Lingual Thought)和CLSP(Cross-Lingual Self Consistent Prompting)。 2. In-Context Learning 3.1.2:将In-Context Learning应用于多语言任务,代表技术有X-InSTA(Cross-lingual Instance Alignment)和In-CLT(Cross-lingual ...
Part1什么是Prompt Learning 从BERT诞生开始,使用下游任务数据微调预训练语言模型 (LM)已成为 NLP 领域的通用做法。直到GPT-3模型首先将自然语言的提示信息(prompt)和任务示例(demonstration)作为上下文输入给GPT-3,使得GPT-3只需要少数的几个样本,不需要训练底层的参数便能够处理任务。应该是受到这一做法的启发,目前很...
Prompt-Tuning自从GPT-3被提出以来,从传统的离散、连续的Prompt的构建、走向面向超大规模模型的In-Context Learning、Instruction-tuning和Chain-of-Thought。 自从GPT、EMLO、BERT的相继提出,以 Pre-training + Fine-tuning 的模式在诸多自然语言处理(NLP)任务中被广泛使用,其先在 ...
来自Google的FLAN模型[6]和HuggingFace的T0模型[7],是两个同时期的工作,均受到了GPT-3的启发,即:给定指令(instruction)和少量示例进行in-context learning。突破:ZeroPrompt,首个中文多任务prompt统一模型 继FLAN和T0之后,ZeroPrompt[9]实现了大规模多任务学习在中文领域“零的突破”。ZeroPrompt...