3.2.In-content Learning 和 Instruction Learning In-context Learning :给出范例,让机器回答其它问题;以 GPT3 为代表,将检索后的每个文档(标题 + 提炼后的语句)作为一个样本输入到 GPT3 里,最后写 “标题:xxx \n 内容:_”,让模型去补全。Instruction Learning:给出题目的叙述,让机器进行回答;以 ...
In-context Learning:给出范例,让机器回答其它问题;以 GPT3 为代表,将检索后的每个文档(标题 + 提炼后的语句)作为一个样本输入到 GPT3 里,最后写 “标题:xxx \n 内容:___”,让模型去补全。 Instruction Learning:给出题目的叙述,让机器进行回答;以ChatGPT为代表,将检索后的信息输入给 ChatGPT 并后面补上...
3.2.In-content Learning 和 Instruction Learning In-context Learning:给出范例,让机器回答其它问题;以 GPT3 为代表,将检索后的每个文档(标题 + 提炼后的语句)作为一个样本输入到 GPT3 里,最后写 “标题:xxx \n 内容:___”,让模型去补全。 Instruction Learning:给出题目的叙述,让机器进行回答;以 ChatGPT ...
3.2.In-content Learning 和 Instruction Learning In-context Learning:给出范例,让机器回答其它问题;以 GPT3 为代表,将检索后的每个文档(标题 + 提炼后的语句)作为一个样本输入到 GPT3 里,最后写 “标题:xxx \n 内容:___”,让模型去补全。 Instruction Learning:给出题目的叙述,让机器进行回答;以 ChatGPT ...
1.In-Context Learning背景与定义 背景 大规模预训练语言模型(LLM)如 GPT-3 是在大规模的互联网文本数据上训练,以给定的前缀来预测生成下一个 token(Next token prediction)。通过预测词的训练目标、大规模数据集以及超高参数量的模型相结合,产生了性能极强的 LLM,它可以 “理解” 任何文本输入,并在其基础上进行...
通过Instruction Learning给【题目叙述】回答问题以及In-context Learning给【范例】回答问题可以让语言模型变成一个通才。 指示学习的优点是它经过多任务的微调后,也能够在其他任务上做zero-shot,而提示学习都是针对一个任务的,泛化能力不如指示学习。 指示学习和提示学习的相同之处是:核心一样,就是去发掘语言模型本身...
通过Instruction Learning给【题目叙述】回答问题以及In-context Learning给【范例】回答问题可以让语言模型变成一个通才。 指示学习的优点是它经过多任务的微调后,也能够在其他任务上做zero-shot,而提示学习都是针对一个任务的,泛化能力不如指示学习。 指示学习和提示学习的相同之处是:核心一样,就是去发掘语言模型本身...
而上下文学习(In-Context Learning,ICL)是指一种不需要对模型进行训练,在Prompt中通过给予示例以及说明来让模型提高模型的预测性能。但是这种性能提升其实并非“学习到的”,更像是一种激活。激活模型原有的记忆。 少样本提示(Few-Shot Prompting)参考上面的*-Shot介绍。尤其需要注意这里和深度学习中的Few-Shot ...
4. 上下文学习In-context learning:新型的元学习 5. 校准语言模型 Calibrating language models 6. 什么是正确的小样本设置(few-shot setting)? 编者按:自GPT-3以来,大语言模型进入了新的训练范式,即“预训练模型+Promp learning”。在这一新的范式下,大语言模型呈现出惊人的zero-shot和few-shot能力,使用较少的...
通过Instruction Learning给【题目叙述】回答问题以及In-context Learning给【范例】回答问题可以让语言模型变成一个通才。 指示学习的优点是它经过多任务的微调后,也能够在其他任务上做zero-shot,而提示学习都是针对一个任务的,泛化能力不如指示学习。 指示学习和提示学习的相同之处是:核心一样,就是去发掘语言模型本身...