效果评估:Prompt2Model 支持在实际数据集上进行模型测试和评估,使得在部署模型之前就能进行初步预测和性能评估,从而提高了模型的可靠性。这些特点使 Prompt2Model 框架成为一个强大的工具,能够高效地完成自然语言处理系统的构建过程,并且提供了先进的功能,如数据自动收集、模型评估以及用户交互界面的创建。实验与结果 ...
效果评估:Prompt2Model 支持在实际数据集上进行模型测试和评估,使得在部署模型之前就能进行初步预测和性能评估,从而提高了模型的可靠性。 这些特点使 Prompt2Model 框架成为一个强大的工具,能够高效地完成自然语言处理系统的构建过程,并且提供了先进的功能,如数据自动收集、模型评估以及用户交互界面的创建。 实验与结果 在...
三个任务的实验结果证明,给出相同的少样本提示作为输入,Prompt2Model可以训练出一个比大型语言模型更强的小模型,在参数量仅为gpt-3.5-turbo的1/700的情况下,实现了20%的性能提升。 01 Prompt2Model框架 Prompt2Model系统相当于一个平台,可以对机器学习管道中的组件进行自动化:包括数据收集、模型训练、评估和部署。
对涵盖传统NLP基准和新颖应用程序的三个任务进行评估,Prompt2Model可以使用自然语言指令生成高质量的数据集和小型模型,这些模型「在特定任务上的性能优于大型语言模型」。Prompt2Model训练的模型的性能比强大的LLM gpt-3.5-turbo的结果平均高出20%,同时尺寸最多缩小700倍。 对于...
Prompt2Model框架包括检索现有的数据集、生成训练数据、搜索与训练模型、微调训练、自动化评估和部署等多个步骤。 三个任务的实验结果证明,给出相同的少样本提示作为输入,Prompt2Model可以训练出一个比大型语言模型更强的小模型,在参数量仅为gpt-3.5-turbo的1/700的情况下,实现了20%的性能提升。
Prompt2Model框架包括检索现有的数据集、生成训练数据、搜索与训练模型、微调训练、自动化评估和部署等多个步骤。 三个任务的实验结果证明,给出相同的少样本提示作为输入,Prompt2Model可以训练出一个比大型语言模型更强的小模型,在参数量仅为gpt-3.5-turbo的1/700的情况下,实现了20%的性能提升。 Prompt2Model框架 ...
CMU 与清华的研究者联合发布了 Prompt2Model 框架,它可以根据用户提供的 prompt,快速训练一个小型专业模型。仅需投入 5 美元用于数据收集和 20 分钟的训练时间,就能获得性能优于ChatGPT平均水平 20% 的小型模型,同时模型参数规模减小了 700 倍。 大规模语言模型(LLM)使用户可以借助提示和上下文学习来构建强大的自然...
Prompt2Model框架包括检索现有的数据集、生成训练数据、搜索与训练模型、微调训练、自动化评估和部署等多个步骤。 三个任务的实验结果证明,给出相同的少样本提示作为输入,Prompt2Model可以训练出一个比大型语言模型更强的小模型,在参数量仅为gpt-3.5-turbo的1/700的情况下,实现了20%的性能提升。
CMU 与清华的研究者联合发布了 Prompt2Model 框架,它可以根据用户提供的 prompt,快速训练一个小型专业模型。仅需投入 5 美元用于数据收集和 20 分钟的训练时间,就能获得性能优于 ChatGPT 平均水平 20% 的小型模型,同时模型参数规模减小了 700 倍。 大规模语言模型(LLM)使用户可以借助提示和上下文学习来构建强大的...
Prompt2Model is a framework for generating a small yet accurate model from a prompt. 类似于GPT-3的语言生成模型(LLM)提供了一种通过“prompt提示”实现的轻量级的自然语言处理系统构建范式。从业者现在可以编写一个prompt提示,指定预期的系统行为(可以选择性地提供一些演示),然后要求LLM通过text completion生成所...