2.PR曲线比ROC曲线更加关注正样本,而ROC则兼顾了两者。 3.AUC越大,反映出正样本的预测结果更加靠前。(推荐的样本更能符合用户的喜好) 4.当正负样本比例失调时,比如正样本1个,负样本100个,则ROC曲线变化不大,此时用PR曲线更加能反映出分类器性能的好坏。 5.PR曲线和ROC绘制的方法不一样。 PR曲线和ROC曲线区...
(1)PR曲线使用了Precision,因此PR曲线的两个指标都聚焦于正例。类别不平衡问题中由于主要关心正例,所以在此情况下PR曲线被广泛认为优于ROC曲线。 使用场景: ROC曲线由于兼顾正例与负例,所以适用于评估分类器的整体性能,相比而言PR曲线完全聚焦于正例。 如果有多份数据且存在不同的类别分布,比如信用卡欺诈问题中每个...
通过绘制PR曲线和ROC曲线我们也可以看到两个迥然不同。
不同点是ROC曲线使用了FPR,而PR曲线使用了Precision,因此PR曲线的两个指标都聚焦于正例。类别不平衡问题中由于主要关心正例,所以在此情况下PR曲线被广泛认为优于ROC曲线。 使用场景 1.ROC曲线由于兼顾正例与负例,所以适用于评估分类器的整体性能,相比而言PR曲线完全聚焦于正例。 2.如果有多份数据且存在不同的类别...