1. PP-OCRv3模型简介 PP-OCRv3在PP-OCRv2的基础上进一步升级。整体的框架图保持了与PP-OCRv2相同的pipeline,针对检测模型和识别模型进行了优化。其中,检测模块仍基于DB算法优化,而识别模块不再采用CRNN,换成了IJCAI 2022最新收录的文本识别算法SVTR,并对其进行产业适配。PP-OCRv3系统框图如下所示(粉色框中为PP-...
1.2 PP-OCRv3 如下图所示,PP-OCRv3 的整体框架示意图与 PP-OCRv2 类似,但较 PP-OCRv2 而言,针对检测模型和识别模型进行了进一步地优化。例如:文本识别模型在 PP-OCRv2 的基础上引入 SVTR,并使用 GTC 指导训练和模型蒸馏。 更多关于 PP-OCRv3 的特征及优化策略,可查看 PP-OCRv3 arXiv 技术报告[5]。 1...
本文开发的模型为基于PaddlePaddle的模型库PaddleOCR中的en_PP-OCRv3_rec模型,该模型是基于PP-OCRv3结构的英文识别模型,PP-OCRv3的识别模块是基于文本识别算法SVTR优化。SVTR不再采用RNN结构,通过引入Transformers结构更加有效地挖掘文本行图像的上下文信息,从而提升文本识别能力。PP-OCRv3的结构介绍参考如下链接: https:...
模型识别Avg Accuracy(%)GPU推理耗时(ms)CPU推理耗时 (ms)模型存储大小(M)介绍 PP-OCRv4_mobile_rec 78.20 7.95018 46.7868 10.6 M PP-OCRv4是百度飞桨视觉团队自研的文本识别模型PP-OCRv3的下一个版本,通过引入数据增强方案、GTC-NRTR指导分支等策略,在模型推理速度不变的情况下,进一步提升了文本识别精度。该模...
如下图为模型代码结构。 如下图所示,将模型配置文件ch_PP-OCRv3_det_cml.yml中的use_gpu设置成false。 如下图所示,将目标检测推理文件 infer_det.py中的第53行代码注释掉。 4.3、添加推理工具代码 推理工具使用的是ais_infer,该工具的获取、编译、安装说明链接为: ...
PP-OCRv3的识别模块是基于文本识别算法SVTR优化。SVTR不再采用RNN结构,通过引入Transformers结构更加有效地挖掘文本行图像的上下文信息,从而提升文本识别能力。直接将PP-OCRv2的识别模型,替换成SVTR_Tiny,识别准确率从74.8%提升到80.1%(+5.3%),但是预测速度慢了将近11倍,CPU上预测一条文本行,将近100ms。因此,如下...
百度飞桨(PaddlePaddle) - PP-OCRv3 文字检测识别系统 基于 Paddle Serving快速使用(服务化部署 - Docker) 1. 预测部署简介与总览 本章主要介绍PP-OCRv2系统的高性能推理方法、服务化部署方法以及端侧部署方法。通过本章的学习,您可以学习到: 根据不同的场景挑选合适的预测部署方法 PP-OCRv2系列模型在不同场景下...
一、 模型介绍: PP-OCR是PaddleOCR团队自研的超轻量OCR系统,面向OCR产业应用,权衡精度与速度。近期,PaddleOCR团队针对PP-OCRv2的检测模块和识别模块,进行共计9个方面的升级,打造出一款全新的、效果更优的超轻量OCR系统:PP-OCRv3。全新升级的PP-OCRv3的整体的框架图检测模块仍基于DB算法优化,而识别模块不再采用CRN...
简介: 百度飞桨(PaddlePaddle) - PP-OCRv3 文字检测识别系统 预测部署简介与总览 1. 预测部署简介与总览 本章主要介绍PP-OCRv2系统的高性能推理方法、服务化部署方法以及端侧部署方法。通过本章的学习,您可以学习到: 根据不同的场景挑选合适的预测部署方法 PP-OCRv2系列模型在不同场景下的推理方法 Paddle ...
由于能力直接基于飞桨的训练算子,因此Paddle Inference 可以通用支持飞桨训练出的所有模型。考虑到大家的使用场景差异很大,Paddle Inference针对不同平台不同的应用场景进行了深度的适配优化,做到高吞吐、低时延,保证了飞桨模型在服务器端即训即用,快速部署。本章主要介绍基于Paddle Inference的PP-OCRv3预测推理过程,更多...