filter(df['column1'] > 1) selected_df filtered_df Join 代码语言:javascript 代码运行次数:0 运行 AI代码解释 df = pl.DataFrame( { "a": np.arange(0, 8), "b": np.random.rand(8), "d": [1, 2.0, np.NaN, np.NaN, 0, -5, -42, None], } ) df2 = pl.DataFrame( { "x":...
importpolarsaspl# 我们这里只有一个 sheet# 此时会返回一个字典,key 是 sheet 的名称,value 是对应的 DataFramedf_dict = pl.read_excel("girl.xlsx", sheet_id=[1])print(df_dict.__class__)# <class 'dict'># 每个 sheet 都有一个名称,默认是 "Sheet1", "Sheet2", "Sheet3", ...print(df_...
Polars是一个用于操作结构化数据的高性能DataFrame库,可以说是平替pandas最有潜质的包。Polars其核心部分是用Rust编写的,但该库也提供了Python接口。它的主要特点包括: 快速: Polars是从零开始编写的,紧密与机器结合,没有外部依赖。 I/O: 对所有常见数据存储层提供一流支持:本地、云存储和数据库。 易于使用: 以...
DataFrame 是一个二维数据结构,由一个或多个 Series 支持,可以看作是对一系列(例如列表)Series的抽象。在 DataFrame 上可以执行的操作与在 SQL 查询中执行的操作非常相似。您可以进行 GROUP BY、JOIN、PIVOT,还可以定义自定义函数。 fromdatetimeimportdatetime df = pl.DataF...
# concat dataframes to add the new "centroid" column elements_df = pl.concat((elements_df, pl.DataFrame(_tmp)), how="align") 结果将类似于: shape: (3, 12) ┌─────────┬─────┬─────┬─────┬───┬─────┬─────┬──────┬─────...
Polars上的Column-和row-wise逻辑运算DataFrame 在Pandas中,可以使用all和any方法对布尔值DataFrames执行布尔运算,并提供axis参数。例如: import pandas as pd data = dict(A=["a","b","?"], B=["d","?","f"]) pd_df = pd.DataFrame(data)...
df = pl.DataFrame(data)# 使用表达式进行选择selected_df = df.select(['column1'])# 使用表达式进行过滤filtered_df = df.filter(df['column1'] > 1)selected_dffiltered_df 加入 df = pl.DataFrame( { 'a': np.arange(0, 8), 'b': np.random.rand(8), 'd': [1, 2.0, np.NaN, np....
Polars是一个用于操作结构化数据的高性能DataFrame库,可以说是平替pandas最有潜质的包。Polars其核心部分是用Rust编写的,但该库也提供了Python接口。它的主要特点包括: 快速: Polars是从零开始编写的,紧密与机器结合,没有外部依赖。 I/O: 对所有常见数据存储层提供一流支持:本地、云存储和数据库。
It seems like accessing a column in a polars DF is pretty slow? I compared pandas vs polars vs polars but instead of accessing the df i turned it into a dict and used that import random import timeit import pandas as pd import polars as pl # Create a DataFrame with 50,000 columns and...
Polars是一个用于操作结构化数据的高性能DataFrame库,可以说是平替pandas最有潜质的包。当然pandas目前作为Python数据分析的核心工具来说还是最强的,完全值得我们深入学习。Polars其核心部分是用Rust编写的,但该库也提供了Python接口。它的主要特点包括: 快速: Polars是从零开始编写的,紧密与机器结合,没有外部依赖。 I/...