[1,2,3]) s3 = pl.Series("var2", [4,5,6]) # I want to add this column with polars somehow output_col = pl.Series("json_per_row", [ json.dumps({ "time": 100, "var1":1, "var2":4 }), json.dumps({ "time": 200, "var1":2, "var2":5 }), json.dumps({ "time"...
(pd_df == "?").any(axis=0) 以及获取行上的掩码: (pd_df == "?").any(axis=1) 此外,要获得单个布尔值: (pd_df == "?").any().any() 相比之下,在polars中,我能想到的最好的是以下内容: import polars as pl pl_df = pl.DataFrame(data) 要获取列上的掩码,请执行以下操作: (pl_df ...
Adding a New ColumnThis example shows how to add a new column to a DataFrame. add_column.py import polars as pl df = pl.DataFrame({ 'Name': ['Alice', 'Bob', 'Charlie'], 'Age': [25, 30, 35] }) df = df.with_column((pl.col('Age') * 2).alias('DoubleAge')) print(df)...
The text in parentheses beside each data type shows how these types are annotated in a DataFrame heading when Polars displays its results:Column NamePolars Data TypeDescription record_id Int64 (i64) Unique row identifier total Float64 (f64) Bill total tip Float64 (f64) Tip given gender ...
除了显示列名,Polars DataFrame还会在列名下面显示该列的数据类型。我们也可以调用dtypes()方法获取各列的数据类型: df.dtypes() 运行上面的代码我们会看到下面的输出: [Utf8, Utf8, Int32, Utf8] 我们也可以用get_column_names()方法获取所有列名:
df.to_numo You can specify column types when creating a data frame Polars::DataFrame.new(data,schema:{"a"=>Polars::Int32,"b"=>Polars::Float32}) Supported types are: boolean -Boolean float -Float64,Float32 integer -Int64,Int32,Int16,Int8 ...
This example shows how to add a time interval to a datetime column. add_time_interval.py import polars as pl from datetime import datetime, timedelta data = { "date": [ datetime(2023, 1, 1), datetime(2023, 1, 2)] } df = pl.DataFrame(data) ...
In addition to assigning a new column with simple logic and operations,.with_columnsoffers more advanced capabilities. With a little trick, you can perform operations similar togroupbyin pandas by usingwindow functions: In pandas df = pd.DataFrame({ ...
Available add-ons Advanced Security Enterprise-grade security features GitHub Copilot Enterprise-grade AI features Premium Support Enterprise-grade 24/7 support Pricing Search or jump to... Search code, repositories, users, issues, pull requests... Provide feedback We read every piece of ...
To add to my confusion, the following works fine in Azure Ops: DataFrameConversionDict=DverseTableQuery.collect().to_dict()self.DataFrame=pd.DataFrame(DataFrameConversionDict) Could anyone able to advise please: 1. what is the reason for the strange behaviour in Azure Function?