PointNet++提供了比较好的表征网络,后序的点云处理发展很多论文都是用到了这种表征方式。不过PointNet++相对于PointNet不管是分类还是分割任务,总体的准确率大概只提升了2-4个点。 参考资料 PointNet论文 PointNet++论文 PointNet作者演讲 三维点云网络——PointNet论文解读 PointNet++论文解读以及代码分析 搞懂PointNet++,...
本系列会对pointnet系列论文以及源码进行解读,这篇文章会简单介绍一下pointnet论文的解读,会挑出每一章重点的部分解读一下,并补充一些基础知识: 0. 前言 pointnet是用输入的点云信息来做3D物体分类和分割的网络模型。 论文下载地址 tensorflow版源码 (先挖个坑,之后有时间会写一下这个介绍) 1. 介绍 已存在的对点...
三维点云网络——PointNet论文解读 PointNet1 是斯坦福大学研究人员提出的一个点云处理网络,与先前工作的不同在于这一网络可以直接输入无序点云进行处理,而无序将数据处理成规则的3Dvoxel形式进行处理。输入点云顺序对于网络的输出结果没有影响,同时也可以处理旋转平移后的点云数据。 点云是一种重要的几何数据形式。
点与点之间的空间关系。一个物体通常由特定空间内的一定数量的点云构成,也就是说这些点云之间存在空间关系。为了能有效利用这种空间关系,论文作者提出了将局部特征和全局特征进行串联的方式来聚合信息。 不变性。点云数据所代表的目标对某些空间转换应该具有不变性,如旋转和平移。论文作者提出了在进行特征提取之前,先对...
图1 PointNet的应用02创新点该论文设计提出了一种适用于处理三维无序点集的全新深度网络架构——PointNet,它提供了一种统一且高效的方式来推理处理点云或网格等三维几何数据。PointNet能够处理从物体分类、部件分割到场景语义解析等各种应用。在经验上,它显示出与当今最先进方法相媲美甚至更好的性能。理论分析也揭示了...
PointNet系列论文阅读与理解 PointNet是斯坦福大学研究人员提出的一种点云处理网络,其可以直接输入无序点云集合进行处理,而不像基于投影的方法需要先对点云进行预处理再输入网络。其可以用作与点云分类和点云分割。由于其可以直接输入无序点云,因此对深度学习点云处理产生了巨大的影响。而同一个作者的进阶版网络...
简介:F-PointNet 提出了直接处理点云数据的方案,但这种方式面临着挑战,比如:如何有效地在三维空间中定位目标的可能位置,即如何产生 3D 候选框,假如全局搜索将会耗费大量算力与时间。F-PointNet是在进行点云处理之前,先使用图像信息得到一些先验搜索范围,这样既能提高效率,又能增加准确率。论文地址:Frustum PointNets...
PointNet提供了一种适用于处理三维无序点集的全新深度网络架构,避免了将点云转换为规则的三维体素网格或图像集合的需要,并在各种应用中实现了高效和有效的性能。 图1 PointNet的应用 02 创新点 该论文设计提出了一种适用于处理三维无序点集的全新深度网络架构——PointNet,它提供了一种统一且高效的方式来推理处理点云...
论文解读|2017 CVPRPointNet: 用于三维分类和分割的点集深度学习,原创|文BFT机器人01背景传统的卷积结构需要规则的输入数据格式,如图像网格或三维体素,以便进行权重共享和其他核优化。由于点云或网格不是规则的格式,因此研究人员通常会将这些数据转换为规则的三维体素
体素法立体处理;2D多视角处理 第一种方法通过栅格化方法,但是voxel总是比点云稀疏,所以会有部分信息丢失的问题。经过3D卷积 第二中方法通过投影的方式得到2D的数据,通过2D CNN进行处理,丢失了部分深度信息 第三种方法通过特征提取处理,使用全连接网络处理