摘要:在无序工件抓取场景中,待抓取的工件处于散乱、堆叠的状态,抓取难度较大,传统配准算法精度不高。针对工件存在堆叠和点云数据含有噪声的场景下,无序工件点云配准的准确性不高的问题,研究提出基于PointNet改进的三维点云配准算法对无序工件进...
论文密级保密时限硕硕士士学学位位论论文基于改进PointNet++网络的三维手势建模学生姓名李嘉伟学号0193110108学科专业学位计算机科学与技术研究方向计算机应用技术导师童立靖011年年111月月88日
2)点与点直接存在空间关系:一个物体通常由特定空间内的一定数量的点云构成,也就是说这些点云之间存在空间关系。为了能有效利用这种空间关系,论文作者提出了将局部特征和全局特征进行串联的方式来聚合信息。 3)旋转平移不变性:点云数据所代表的目标对某些空间转换应该具有不变性,如旋转和平移。论文作者提出了在进行特征...
论文地址: PointNet++ 论文背景: 论文主要解决的是点云分割与点云分类的问题。该方法对PointNet进行了改进。针对PointNet存在的无法获得局部特征,难以对复杂场景进行分析的缺点。PointNet++,通过两个主要的方法进行了改进: 利用空间距离(metric space distances),使用PointNet对点集局部区域进行特征迭代提取,使其能够学到局...
论文作者提出了在进行特征提取之前,先对点云数据进行对齐的方式来保证不变性。对齐操作是通过训练一个小型的网络来得到转换矩阵,并将之和输入点云数据相乘来实现。Pointnet的解决方法是学习一个变换矩阵T,即T-Net结构。由于loss的约束,使得T矩阵训练会学习到最有利于最终分类的变换,如把点云旋转到正面。论文的架构中...