LeetCode题解之Pascal's Triangle II 1、题目描述 2、题目分析 题目要求返回杨辉三角的某一行,需要将杨辉三角的某行的全部计算出来。 3、代码实现 1vector<int> getRow(introwIndex) {23if( rowIndex ==0)4returnvector<int>(1,1);56vector<int>b{1,1};7intn =2;8while(n <=rowIndex){9vector<in...
Given an index k, return the kth row of the Pascal’s triangle. For example, given k = 3, Return [1,3,3,1]. Note: Could you optimize your algorithm to use only O(k) extra space? My Solution: classSolution {publicList<Integer> getRow(introwIndex) { List list=newArrayList();for(...
因为Pascal's Triangle是层层嵌套的,下一层的元素是由上一层的元素求得,但是此题目又对空间做了要求,所以在循环调用的过程中每求得一行都要对前一行的空间进行clear,这样才能保证空间复杂度是O(k)。 java代码: publicclassSolution {publicList<Integer> getRow(introwIndex) { List<Integer> list =newArrayList<...
Given an index k, return the kth row of the Pascal's triangle. For example, given k = 3, Return [1,3,3,1]. 分析 先构造了一个杨辉三角,然后返回这个杨辉三角的最后一组值,没超时就万事大吉了... 感觉可以用递归写,但是嫌麻烦,放弃了。 代码如下: classSolution{public:vector<int>getRow(intro...
LeetCode 118:杨辉三角 II Pascal's Triangle II 公众号:爱写bug(ID:icodebugs) 给定一个非负索引k,其中k≤ 33,返回杨辉三角的第k行。 Given a non-negative indexkwherek≤ 33, return thekth index row of the Pascal's triangle. Note that the row index starts from 0....
1 class Solution { 2 public: 3 vector getRow(int rowIndex) { 4 // Note: The Solution object is instantiated only once and is reused by each test case.
[Leetcode] Pascal's Triangle II Given an indexk, return thekth row of the Pascal's triangle. For example, givenk= 3, Return[1,3,3,1]. Note: Could you optimize your algorithm to use onlyO(k) extra space? Solution 1: 直接利用数学公式来求解。
Given an indexk, return thekth row of the Pascal's triangle. For example, givenk= 3, Return[1,3,3,1]. Note: Could you optimize your algorithm to use onlyO(k) extra space? 题目标签:Array 这道题目与之前那题不同的地方在于,之前是给我们一个行数n,让我们把这几行的全部写出来,这样就可...
今天介绍的是LeetCode算法题中Easy级别的第30题(顺位题号是119)。给定非负索引k,其中k≤33,返回Pascal三角形的第k个索引行。行索引从0开始。在Pascal的三角形中,每个数字是它上面两个数字的总和。例如: 输入: 2 输出: [1,2,1] 输入: 3 输出: [1,3,3,1] ...
Given an indexk, return thekthrow of the Pascal's triangle. For example, givenk= 3, Return[1,3,3,1]. Note: Could you optimize your algorithm to use onlyO(k) extra space? [解题思路] 从后往前计算,另外Trangle的index从0开始,故分配的数组大小为rowIndex + 1 ...