当我们对pandas Series对象调用.unique()时,它将返回该列中唯一元素的列表。 图6 在pandas Dataframe上调用.unique()时,我们将收到一条错误消息,因为数据框架上上不存在此方法! 图7 Python集 获取唯一值的另一种方法是使用Python中的数据结构set,集(set)基本上是一组唯一项的集合。由于集只包含唯一项,如果我们...
1.检查缺失数据 检查数据中是否存在缺失值。可以使用isnull()或isna()方法来检查数据中的缺失值,使用...
请注意,s.a uint()比np快。唯一性(O(N) vs O(NlogN)),它会保留顺序,而不会返回排序结果。独特的。 缺失值被视为普通值,有时可能会导致令人惊讶的结果。 如果你想排除nan,需要显式地这样做。在这个例子中,是s.l opdropna().is_unique == True。 还有一类单调函数,它们的名字是自描述的: s.is_mon...
Pandas没有针对列的set_index。向列中添加层次的一种常见方法是将现有的层次从索引中“解栈”: Pandas的栈与NumPy的栈有很大不同。让我们看看文档中对命名约定的说明: “该函数的命名类似于重新组织的书籍集合,从水平位置并排(dataframe的列)到垂直堆叠(在dataframe的索引中)。” “在上面”的部分听起来并不能让...
nunique() # 删除重复数据 df.drop_duplicates(inplace=True) # 某列等于某值 df[df.col_name==0.587221] # df.col_name==0.587221 各行判断结果返回值(True/False) # 查看某列唯一值及计数 df_jj2["变压器编号"].value_counts() # 时间段筛选 df_jj2yyb_0501_0701 = df_jj2yyb[(df_jj2yyb['...
Pandas没有针对列的set_index。向列中添加层次的一种常见方法是将现有的层次从索引中“解栈”: Pandas的栈与NumPy的栈有很大不同。让我们看看文档中对命名约定的说明: “该函数的命名类似于重新组织的书籍集合,从水平位置并排(dataframe的列)到垂直堆叠(在dataframe的索引中)。” ...
nunique()# 删除重复数据df.drop_duplicates(inplace=True)# 某列等于某值df[df.col_name==0.587221]# df.col_name==0.587221 各行判断结果返回值(True/False)# 查看某列唯一值及计数df_jj2["变压器编号"].value_counts()# 时间段筛选df_jj2yyb_0501_0701 = df_jj2yyb[(df_jj2yyb['r_time'] >...
df['education'].nunique() # 删除重复数据 df.drop_duplicates(inplace=True) # 某列等于某值 df[df.col_name==0.587221] # df.col_name==0.587221 各行判断结果返回值(True/False) # 查看某列唯一值及计数 df_jj2["变压器编号"].value_counts() ...
ValueError: Cannot setitem on a Categoricalwitha new category, set the categories first 这个错误让我回忆起我过去处理分组数据时遇到的一些挑战。当你合并和关联分组数据时,你很容易遇到这些错误。 我试图找到一个比较好的方法来修改generage,想让它起作用,但目前还没找到。如果有任何读者能找到方法,可以联系我...
我们知道可以用于for循环中不断迭代的数据有:list,tuple,dict,set,str等集合类数据类型,或者是generator(包括带yield的generator function)。所有这些类型的数据我们都称之为可迭代的数据类型(iterable),可以使用isinstance()来具体判断: >>>fromcollectionsimportIterable>>>isinstance([], Iterable) ...