import pandas as pd import sqlite3 # 也可以使用 pymysql、sqlalchemy 等数据库连接库 # 创建数据库连接 conn = sqlite3.connect("example.db") # 执行 SQL 语句,读取数据 df = pd.read_sql("SELECT * FROM table_name", conn) # 关闭连接 conn.close() 2. read_sql() 的两种调用方式 pd.read_...
pd.read_sql_table(table_name, con, schema=None, index_col=None, coerce_float=True, parse_dates=None, columns=None, chunksize=None) 例如:data = pd.read_sql_table(table_name = 't_line',con = engine,parse_dates = 'time',index_col = 'time',columns = ['a','b','c']) 3:读数据...
pandas.read_sql_table(table_name,con,schema = None,index_col = None,coerce_float = True,parse_dates = None,columns = None,chunksize = None )源代码 通过数据库表名读入DataFrame。 给定一个表名和一个可连接SQLAlchemy,返回一个DataFrame。此功能不支持DBAPI连接。 参数: table_name:string 数据库中...
pd.read_sql_table(table_name, con, schema=None, index_col=None, coerce_float=True, parse_dates=None, columns=None, chunksize=None) 例如:data = pd.read_sql_table(table_name = 't_line',con = engine,parse_dates = 'time',index_col = 'time',columns = ['a','b','c']) 3:读数据...
In this code, we execute the SQL query “SELECT * FROM users WHERE age > 20”. This query selects all columns from the ‘users’ table, but only rows where the ‘age’ is greater than 20. Theread_sqlfunction then executes this query and loads the result into the dataframedf. ...
共有8个可选参数:sql,con,index_col,coerce_float,params,parse_date,columns,chunksize。 该函数基础功能为将SQL查询或数据库表读入DataFrame。此函数是read_sql_table和read_sql_query(向后兼容性)两个函数功能结合。它将根据提供的输入参数传入给特定功能。一个SQL查询将传入到read_sql_query查询,而数据库表名称...
我可以使用psql将整个表导出到csv,然后使用pd.read_csv()读取它。它完全正常。 Python进程仅使用大约1GB的内存,一切都很好。 现在,我们需要确保的任务需要自动化,因此我认为我可以直接从DB中使用pd.read_sql_table()读取该表。使用以下代码 import sqlalchemy engine = sqlalchemy.create_engine("postgresql://usern...
Pandas read_sql() function is used to read data from SQL queries or database tables into DataFrame. This function allows you to execute SQL queries and
Pandas 纳入了大量库和一些标准的数据模型,提供了高效地操作大型数据集所需的工具。Pandas提供了大量能使我们快速便捷地处理数据的函数和方法。你很快就会发现,它是使Python成为强大而高效的数据分析环境的重要因素之一。本文主要介绍一下Pandas中read_sql_table方法的使用。
pandas的read_sql方法,pandas的to_sql方法用于将DataFrame中的数据插入到SQL数据库表中。以下是to_sql方法各个主要参数的含义:name含义:要将数据插入到的数据库表名。示例:df.to_sql('my_table',engine),这里的'my_table'就是目标表名。con含义:数据库连接对象,用于