pandas.read_excel(io,sheet_name=0,*,header=0,names=None,index_col=None,usecols=None,dtype=None,engine=None,converters=None,true_values=None,false_values=None,skiprows=None,nrows=None,na_values=None,keep_default_na=True,na_filter=True,verbose=False,parse_dates=False,date_parser=<no_default>...
date_format: 'dict[Hashable, str] | str | None' = None,thousands: 'str | None' = None,decimal: 'str' = '.',comment: 'str | None' = None,skipfooter: 'int' = 0,storage_options: 'StorageOptions' = None)这里安装的是pandas 2.0.3版本,可以看到read_excel函数有26个参数,虽然有这么...
pandas.read_excel(io,sheet_name=0,header=0,names=None,index_col=None,usecols=None,squeeze=False,dtype=None,engine=None,converters=None,true_values=None,false_values=None,skiprows=None,nrows=None,na_values=None,keep_default_na=True,verbose=False,parse_dates=False,date_parser=None,thousands=None...
读取excel主要通过read_excel函数实现,除了pandas还需要安装第三方库xlrd。 代码语言:javascript 代码运行次数:0 运行 AI代码解释 ''' pd.read_excel(io, sheetname=0, header=0, skiprows=None, skip_footer=0, index_col=None, names=None,parse_cols=None, parse_dates=False, date_parser=None, na_values...
importpandasaspd# 读取 Excel 文件df=pd.read_excel('example.xlsx',parse_dates={'完整日期':['年','月','日']})# 打印数据类型print(df.dtypes) 1. 2. 3. 4. 5. 6. 7. 3.parse_dates与date_parser参数对比 parse_dates参数用于指定需要解析的列,而date_parser参数则用于指定自定义的日期解析器...
这可能导致Pandas无法正确解析日期。解决方法是在读取Excel文件时,通过指定日期格式参数来告诉Pandas日期的格式,例如使用pd.read_excel('file.xlsx', parse_dates=['date_column'], date_parser=lambda x: pd.to_datetime(x, format='%Y-%m-%d'))来解析"yyyy-mm-dd"格式的日期。
pandas.read_excel(io,sheet_name=0,header=0,names=None,index_col=None,usecols=None,squeeze=False,dtype=None,engine=None,converters=None,true_values=None,false_values=None,skiprows=None,nrows=None,na_values=None,keep_default_na=True,na_filter=True,verbose=False,parse_dates=False,date_parser=Non...
在Python的数据分析库pandas中,read_excel函数是用于从Excel文件中读取数据的强大工具。通过使用这个函数,用户可以从Excel文件(如.xlsx或.xls格式)中读取数据,并将其转换为DataFrame对象,以便进行进一步的数据处理和分析。read_excel函数的基本语法如下: pandas.read_excel(io, sheet_name=0, header=0, index_col=Non...
date_parser = None, thousands = None, comment = None, skipfooter = 0, convert_float = True, **kwds) pandas读取Excel后返回DataFrame,接下来我们就pd.read_excel()的常用参数进行详细解析。 目录 1、io,Excel的存储路径 2、sheet_name,要读取的工作表名称 ...
首先是pd.read_excel的参数:函数为: 复制pd.read_excel(io, sheetname=0,header=0,skiprows=None,index_col=None,names=None, arse_cols=None,date_parser=None,na_values=None,thousands=None, convert_float=True,has_index_names=None,converters=None,dtype=None, true_values=None,false_values=None,engin...