import pandas as pd # 读取整个csv文件,不指定列 df = pd.read_csv('data.csv') # 读取指定列 selected_columns = ['column1', 'column2', 'column3'] df_selected = pd.read_csv('data.csv', usecols=selected_columns) 复制代码 在第二个例子中,使用了usecols参数来指定需要读取的列,将列名以列表...
importpandasaspd# 我们想要将'`email`'列作为DataFrame的索引df8 = pd.read_csv('data.csv', index_col='email')print(df8)# 或者,如果我们知道'email'列在第4列的位置,也可以这样指定df9 = pd.read_csv('data.csv', index_col=3)print(df9) usecols 读取指定的列 usecols读取指定的列,可以是列名或...
pd.read_csv(data, usecols=['列1', '列5']) # 按列名,列名必须存在 # 指定列顺序,其实是 df 的筛选功能 pd.read_csv(data, usecols=['列1', '列5'])[['列5', '列1']] # 以下用 callable 方式可以巧妙指定顺序, in 后边的是我们要的顺序 pd.read_csv(data, usecols=lambda x: x.upper(...
回答:在使用pandas.read_csv读取CSV文件时,列名问题主要涉及到以下几个方面: 列名的默认处理方式:pandas.read_csv默认将CSV文件的第一行作为列名。如果CSV文件没有列名,可以通过设置header参数来指定列名的行数,例如header=0表示第一行为列名。 列名的重命名:如果CSV文件的列名不符合需求,可以通过设置names参数来重新...
df1 = pandas.read_csv('data.csv', sep=',') print(df1) df2 = pandas.read_csv('data.csv', delimiter=',') print(df2) header 用作列名的行号 header: 指定哪一行作为列名,默认为0,即第一行,如果没有列名则设为None。 如下数据,没有header ...
df2 = pandas.read_csv('data.csv', delimiter=',') print(df2) header 用作列名的行号 header: 指定哪一行作为列名,默认为0,即第一行,如果没有列名则设为None。 如下数据,没有header 张三,男,22,123@qq.com 李四,男,23,222@qq.com 王五,女,24,233@qq.com ...
index_col参数在使用pandas的read_csv函数时用于指定哪一列作为DataFrame的索引。 如果设置为None(默认值),CSV文件中的行索引将用作DataFrame的索引。如果设置为某个列的位置(整数)或列名(字符串),则该列将被用作DataFrame的索引。 代码语言:python 代码运行次数:0 ...
一、pandas读取csv文件 数据处理过程中csv文件用的比较多。 import pandas as pd data = pd.read_csv('F:/Zhu/test/test.csv') 1. 2. 下面看一下pd.read_csv常用的参数: pandas.read_csv(filepath_or_buffer, sep=', ', delimiter=None, header='infer', names=None, index_col=None, usecols=None...
df = pd.read_csv('data.csv', encoding='utf-8') 更多的read_csv()参数 除了io参数之外,read_csv()函数还有许多其他参数,用于控制数据的读取和解析过程。 以下是一些常用的参数: sep:用于指定字段之间的分隔符,默认为逗号。 header:用于指定哪一行作为列名,默认为第一行。