pd.read_csv(filepath_or_buffer:Union[str,pathlib.Path,IO[~AnyStr]],sep=',',delimiter=None,header='infer',names=None,index_col=None,usecols=None,squeeze=False,prefix=None,mangle_dupe_cols=True,dtype=None,engine=
filepath_or_buffer: FilePath | ReadCsvBuffer[bytes] | ReadCsvBuffer[str]可以接收3种类型,文件路径,读取文件的bytes, 读取文件的str。 可以接受任何有效的字符串路径。该字符串可以是 URL。有效的 URL 方案包括 http、ftp、s3、gs 和 file。对于文件 URL,需要主机。本地文件可以是:file://localhost/path/...
# 读取字符串路径importpandasfrompathlibimportPath# 1.相对路径,或文件绝对路径df1=pandas.read_csv('data.csv')print(df1)# 文件路径对象Pathfile_path=Path(__file__).parent.joinpath('data.csv')df2=pandas.read_csv(file_path)print(df2)# 读取url地址df3=pandas.read_csv('http://127.0.0.1:8000/...
# 读取字符串路径importpandasfrompathlibimportPath# 1.相对路径,或文件绝对路径df1 = pandas.read_csv('data.csv')print(df1)# 文件路径对象Pathfile_path = Path(__file__).parent.joinpath('data.csv') df2 = pandas.read_csv(file_path)print(df2)# 读取url地址df3 = pandas.read_csv('http://127...
pd.read_csv("girl.csv") 由于指定的分隔符 和 csv文件采用的分隔符 不一致,因此多个列之间没有分开,而是连在一起了。 所以,我们需要将分隔符设置成"\t"才可以。 pd.read_csv('girl.csv', sep='\t') delimiter 分隔符的另一个名字,与 sep 功能相似。
比如这里pd.read_csv()包含如下一些参数:pd.read_csv(filepath_or_buffer: Union[str, pathlib.Path...
数据类型:read_csv() 可能会自动推测数据类型,但有时候会“猜错”。比如,身份证号可能被当成整数,导致前导零丢失,或者日期被当成字符串。可以用 dtype={"column_name": str} 指定正确的数据类型,确保数据不变形。最佳实践 想让 pandas.read_csv() 运行得又快又稳,就得掌握一些“高效秘籍”。以下这些...
filepath_or_buffer: FilePath | ReadCsvBuffer[bytes] | ReadCsvBuffer[str]可以接收3种类型,文件路径,读取文件的bytes, 读取文件的str。 可以接受任何有效的字符串路径。该字符串可以是 URL。有效的 URL 方案包括 http、ftp、s3、gs 和 file。对于文件 URL,需要主机。本地文件可以是:file://localhost/path/...
df = pandas.read_csv("filepath")接下来开始详细介绍几个比较有用的参数 filepath_or_buffer 这是唯一的位置参数,必须进行传递。可以是字符串,可以是URL,有效的URL方案包括http、ftp、s3路径,也可以是一个通过read()方法打开的文件流。sep/delimiter 分隔符。str类型,默认为",",read_table默人分隔符为"...
尝试使用以下格式将 csv 文件读入 pandas 数据框dp = pd.read_csv('products.csv', header = 0, dtype = {'name': str,'review': str, 'rating': int,'word_count': dict}, engine = 'c') print dp.shape for col in dp.columns: print 'column', col,':', type(col[0]) print type(dp...