import pandas as pd from io import StringIO data = data = ('col1,col2,col3\na,b,1\na,b,2\nc,d,3') d = pd.read_csv(StringIO(data)) # usecols 过滤列,筛选将要使用的列 使用此参数可以大大加快解析时间并降低内存使用量。 d = pd.read_csv(String... ...
pd.read_csv(StringIO(data), converters={'x': foo, 'y': lambda x: x*3}) # 输出: x y 0 as 111 1 bs 222 # 使用列索引 pd.read_csv(StringIO(data), converters={0: foo, 1: lambda x: x*3}) 1 2 3 4 5 6 7 8 9 10 11 12 13 14 2.14 true_values(真值转换) true_values...
pandas.read_csv() 是最流行的数据分析框架 pandas 中的一个方法。 我们日常使用的时候这个函数也是我们用的最多的,但是pandas.read_csv() 有很多输入参数,其中 filepath或buffer 参数是必不可少的,其余的都是可选的。所以我们一般也不会太关注,但是这些可选参数可以帮我们解决大问题。以下是read_csv完整的...
读取nba.csv 文件数据: 实例 importpandasaspd df=pd.read_csv('nba.csv') print(df.to_string()) to_string()用于返回 DataFrame 类型的数据,如果不使用该函数,则输出结果为数据的前面 5 行和末尾 5 行,中间部分以...代替。 实例 importpandasaspd ...
read_csv('data.csv', usecols=lambda x: x == 'True') 自定义日期解析: 如果你需要自定义日期解析的格式,可以使用date_parser参数。这将接受一个函数,该函数将用于解析日期字符串: from datetime import datetime def custom_date_parser(date_string): return datetime.strptime(date_string, '%Y-%m-%d')...
总结 在pandas中,以字符串格式读取数据通常涉及使用pd.read_csv()函数,该函数支持多种参数以满足不同的读取需求。此外,对于直接以字符串形式提供的数据,可以使用StringIO将其转换为文件对象后再进行读取。
代码语言:javascript 代码运行次数:0 运行 AI代码解释 pandas.read_csv(filepath_or_buffer,sep=NoDefault.no_default,delimiter=None,header='infer',names=NoDefault.no_default,index_col=None,usecols=None,squeeze=None,prefix=NoDefault.no_default,mangle_dupe_cols=True,dtype=None,engine=None,converters=Non...
data = "col1:col2:col3\na:b:1\na:b:2\nc:d:3" pd.read_csv(StringIO(data),sep=':'...
一、CSV 1.1 read_csv pandas.read_csv(filepath_or_buffer, sep =',', usecols )filepath_or_...
read_csv(StringIO(data), converters={'x': foo, 'y': lambda x: x*3}) # 使用列索引 pd.read_csv(StringIO(data), converters={0: foo, 1: lambda x: x*3}) 真值转换 true_values 将指定的文本转换为 True, 可以用列表指定多个值。 代码语言:javascript 代码运行次数:0 运行 AI代码解释 # ...