pandas 的 pivot_table 是一个非常强大的工具,用于对数据进行多维分析。它允许你根据一个或多个列对数据进行聚合、分组和汇总。以下是对 pivot_table 的详细解释及示例代码。1. 基本语法 data: 要处理的数据框(DataFrame)。values: 要聚合的列。index: 在行上进行分组的列。columns: 在列上
1. pivot_table函数简介 pivot_table函数的基本语法如下: pandas.pivot_table(data, values=None, index=None, columns=None, aggfunc='mean', fill_value=None, margins=False, dropna=True, margins_name='All', observed=False, sort=True) 主要参数说明: data: 要进行汇总的DataFrame values: 需要聚合的...
pd.pivot_table(df,index=["Manager","Rep"],values=["Price"]) “Price”列会自动计算数据的平均值,但是我们也可以对该列元素进行计数或求和。要添加这些功能,使用aggfunc和np.sum就很容易实现。 pd.pivot_table(df,index=["Manager","Rep"],values=["Price"],aggfunc=np.sum) aggfunc可以包含很多函数,...
透视表pivot_table()是非常强大的汇总运算函数。 在SQL语句和excel中透视表也是非常普遍的。 我也是忍了很久才留到现在总结。 废话少说,直接上图: 常用的基本格式如下: values 是要进行汇总、统计运算的。可以…
pd.pivot_table(df,index=["Manager","Rep"],values=["Price"]) “Price”列会自动计算数据的平均值,但是我们也可以对该列元素进行计数或求和。要添加这些功能,使用aggfunc和np.sum就很容易实现。 pd.pivot_table(df,index=["Manager","Rep"],values=["Price...
pandas.pivot_table(data, values=None, index=None, columns=None, aggfunc='mean', fill_value=None, margins=False, dropna=True, margins_name='All', observed=False, sort=True) 主要参数说明: data: 要进行汇总的DataFramevalues: 需要聚合的列index: 行索引columns: 列索引aggfunc: 聚合函数,默认为mean...
我认为pivot_table中一个令人困惑的地方是"columns(列)"和"values(值)“的使用。记住,变量"values” 它相当于Excel透视表里的数值,变量“columns” 它相当于Excel透视表里的列标签。 然而,聚合函数aggfunc最后是被应用到了变量"values"中你所列举的项目上。
利用Pandas的pivot_table进行多维数据分析 Pandas中的`pivot_table`函数是一个非常强大的工具,它能够帮助用户对数据进行多维度的分析和汇总,使得数据透视表成为探索性数据分析中的重要手段。通过使用`pivot_table`函数,我们可以轻松地对大量数据进行分组、聚合,并以一种直观的方式展示结果。此功能支持多种聚合操作,如...
column = pivot_table_with_margins.copy()pivot_table_with_calculated_column['总薪资'] = pivot_table_with_margins.sum(axis=1) # 计算每行的总薪资# 打印带有计算列的透视表print(pivot_table_with_calculated_column)# 多个聚合函数pivot_table_multiple_aggs = pd.pivot_table( df, values=['...
DataFrame.pivot_table(self, values=None, index=None, columns=None, aggfunc='mean', fill_value=None, margins=False, dropna=True, margins_name='All', observed=False) → 'DataFrame'[source] 创建电子表格样式的pivot table作为DataFrame。 pivot table中的级别将存储在结果DataFrame的索引和列上的MultiInde...