在使用pandas读取Excel文件时,header参数用于指定哪一行作为列名(即表头)。以下是对header参数的详细解释和示例代码: 导入pandas库: 首先,确保已经安装了pandas库,并在代码中导入它。 python import pandas as pd 使用pandas的read_excel函数读取Excel文件: 使用pd.read_excel()函数读取Excel文件。这个函数有多个参数,...
pd.read_excel()方法用于从 Excel 文件中读取数据并加载为 DataFrame。它支持读取.xls和.xlsx格式的文件。 语法格式如下: pandas.read_excel(io,sheet_name=0,*,header=0,names=None,index_col=None,usecols=None,dtype=None,engine=None,converters=None,true_values=None,false_values=None,skiprows=None,nrows...
pd.read_excel('fake2excel.xlsx', index_col=None)2、指定sheet读取 见名知意。pd.read_excel(open('fake2excel.xlsx', 'rb'), sheet_name='Sheet2')# 使用sheet_name=0,指定读取sheet2里面的内容。我们在原表里加入了sheet2,结果如下图所示:这种情况下,不会读取sheet1里面的内容 3、取消header读取...
pd.read_excel(io,sheet_name: 'str | int | list[IntStrT] | None' = 0,*,header: 'int | Sequence[int] | None' = 0,names: 'list[str] | None' = None,index_col: 'int | Sequence[int] | None' = None,usecols: 'int | str | Sequence[int] | Sequence[str] | Callable[[str],...
三、pd.read_excel() # 从excel的.xls或.xlsx格式读取异质型表格数据 read_excel()的参数与read_csv()较为接近,但是又有些许不同。 参数说明 path # 表明文件系统位置的字符串、URL或文件型对象 sheet_name # 指定要加载的表,支持类型有:str、list、int、None header # 用作列名的行号,默认是0(第一行)...
import pandas as pd # 读取Excel文件 df = pd.read_excel('example.xlsx', sheet_name='Sheet1', header=0, index_col=None) # 显示前5行数据 print(df.head()) 在上面的示例中,我们使用pd.read_excel()函数读取名为“example.xlsx”的Excel文件中的第一个工作表(Sheet1),并将第一行用作列名。我们...
除了使用xlrd库或者xlwt库进行对excel表格的操作读与写,而且pandas库同样支持excel的操作;且pandas操作更加简介方便。 首先是pd.read_excel的参数:函数为: 复制pd.read_excel(io, sheetname=0,header=0,skiprows=None,index_col=None,names=None, arse_cols=None,date_parser=None,na_values=None,thousands=None,...
pd.read_excel(open('fake2excel.xlsx','rb'),sheet_name='Sheet2')# 使用sheet_name=0,指定读取sheet2里面的内容。 我们在原表里加入了sheet2,结果如下图所示: 这种情况下,不会读取sheet1里面的内容 3、取消header读取 读取本身没有列名的数据。 代码语言:javascript 代码运行次数:0 运行 AI代码解释 pd.r...
网页具有以上结构,我们可以尝试用pandas的 pd.read_html() 方法来直接获取数据。 pd.read_html() 的一些主要参数 io:接收网址、文件、字符串 header:指定列名所在的行 encoding:The encoding used to decode the web page attrs:传递一个字典,用其中的属性筛选出特定的表格 ...
pandas的read_csv或者read_excel方法可以进行读取操作,我们看到参数很多,使用skiprows可以设置跳过相应的行数: pd.read_excel(io, sheetname=0,header=0,skiprows=None,index_col=None,names=None, arse_cols=None,date_parser=None,na_values=None,thousands=None, ...