填充值参数:value=None(空值) import pandas as pd def test(): # 读取Excel文件 df = pd.read_excel('测试数据.xlsx') # 插入列 df.insert(loc=2, column='爱好', value=None) # 保存修改后的DataFrame到新的Excel文件 df.to_excel('结果.xlsx', index=False) test() 3、插入多列 假设我需要在...
DataFrame.insert(self, loc, column, value, allow_duplicates=False)[source] 将列插入到DataFrame中的指定位置。 引发一个ValueError如果列已经包含在DataFrame,除非allow_duplicates设置为True。 参数: loc:int 插入索引,必须验证0 <= loc <= len(columns) column: 字符串,数字或hashable对象 插入列的标签 value...
方法描述DataFrame.head([n])返回前n行数据DataFrame.at快速标签常量访问器DataFrame.iat快速整型常量访问器DataFrame.loc标签定位DataFrame.iloc整型定位DataFrame.insert(loc, column, value[, …])在特殊地点插入行DataFrame.iter()Iterate over infor axisDataFrame.iteritems()返回列名和序列的迭代器DataFrame.iterrows(...
value_counts方法通常对于具有对象数据类型的序列更为有用,但有时也可以提供对数值序列的深入了解。 与actor_1_fb_likes一起使用时,似乎已将较高的数字四舍五入到最接近的千位,因为不太可能有那么多电影获得准确的 1,000 个赞: 代码语言:javascript 代码运行次数:0 运行 复制 >>> actor_1_fb_likes.value_co...
diff() Calculate the difference between a value and the value of the same column in the previous row div() Divides the values of a DataFrame with the specified value(s) dot() Multiplies the values of a DataFrame with values from another array-like object, and add the result drop() Drops...
步骤1 中head方法的结果是另一个序列。value_counts方法也产生一个序列,但具有原始序列的唯一值作为索引,计数作为其值。 在步骤 5 中,size和count返回标量值,但是shape返回单项元组。 形状属性返回一个单项元组似乎很奇怪,但这是从 NumPy 借来的约定,它允许任意数量的维度的数组。
df.loc[rowIndex]['Cli-Sub-Cat'] = 'Config' >>> Trying to insert a new column with a custom value continue if re.search('counter|stat', headline, re.I): counter_count+=1 df.loc[rowIndex]['Cli-Sub-Cat'] = 'Counter' continue ...
The type of the key-value pairs can be customized with the parameters (see below). Parameters --- orient : str {'dict', 'list', 'series', 'split', 'records', 'index'} Determines the type of the values of the dictionary. - 'dict' (default) : dict like {column -> {index -...
insert(loc = 0, column = 'new', value = new_col) # Add column print(data_new2) # Print updated dataIn Table 3 you can see that we have created another pandas DataFrame with a new column at the first position of our data using the previous Python syntax....
# 从字典对象导入数据,Key 是列名,Value是数据 pd.DataFrame(dict) # 导入字符串 from io import StringIO pd.read_csv(StringIO(web_data.text)) 回到顶部 二、导出数据 # 导出数据到CSV文件 df.to_csv('filename.csv') # 导出数据到Excel文件 ...