In [32]: %%time ...: files = pathlib.Path("data/timeseries/").glob("ts*.parquet") ...: counts = pd.Series(dtype=int) ...: for path in files: ...: df = pd.read_parquet(path) ...: counts = counts.add(df["name"].value_counts(), fill_value=0) ...: counts.astype(in...
if_exists: 当数据库中已经存在数据表时对数据表的操作,有replace替换、append追加,fail则当表存在时提示ValueError。 db = sqla.create_engine("mysql+pymysql://root:1477@127.0.0.1:3306/test") conn = pymysql.connect(host="127.0.0.1", port=3306, user="root", password="1477", database="test"...
4397 """ 4398 if self._is_copy: -> 4399 self._check_setitem_copy(t="referent") 4400 return False ~/work/pandas/pandas/pandas/core/generic.py in ?(self, t, force) 4469 "indexing.html#returning-a-view-versus-a-copy" 4470 ) 4471 4472 if value == "raise": -> 4473 raise Setting...
# create a dataframedframe = pd.DataFrame(np.random.randn(4, 3), columns=list('bde'), index=['India', 'USA', 'China', 'Russia'])#compute a formatted string from each floating point value in framechangefn = lambda x: '%.2f' % x# Make...
fillna(value=None, method=None, axis=None, inplace=False, limit=None, downcast=None) 参数解释: value:用于替换 NaN 的值。可以是标量、字典、DataFrame 等类型。默认为None。 method:用于填充方法,取值为 {‘backfill’, ‘bfill’, ‘pad’, ‘ffill’, None}。默认为 None。 axis:指定填充方向,取值...
f = lambda x: x['First'][x['Second'].index('adj')] if 'adj' in x['Second'] else None df['new'] = df.apply(f, axis=1) print (df) First Second new 0 [First, value] [adj, noun] First 1 [second, value] [adj, noun] second 2 [third, value, is] [adj, noun, verb]...
in Series.__getitem__(self, key) 1118 return self._values[key] 1120 elif key_is_scalar: -> 1121 return self._get_value(key) 1123 # Convert generator to list before going through hashable part 1124 # (We will iterate through the generator there to check for slices) 1125 if is_iterato...
楔子Python 在数据处理领域有如今的地位,和 Pandas 的存在密不可分,然而除了 Pandas 之外,还有一个库也在为 Python 的数据处理添砖加瓦,它就是我们本次要介绍的 Polars。和 Pandas 相比,Polars 的速度更快,执行常见运算的速度是 Pandas 的 5 到
on the otheraxes are still respected in the join.keys : sequence, default NoneIf multiple levels passed, should contain tuples. Constructhierarchical index using the passed keys as the outermost level.levels : list of sequences, default NoneSpecific levels (unique values) to use for constructing...
In [8]: pd.Series(d) Out[8]: b1a0c2dtype: int64 如果传递了索引,则将从数据中与索引中的标签对应的值提取出来。 In [9]: d = {"a":0.0,"b":1.0,"c":2.0} In [10]: pd.Series(d) Out[10]: a0.0b1.0c2.0dtype: float64