.get_level_values(level):返回指定level的Index,用于MultiIndex。 .get_loc(key[, method, tolerance]):返回指定label处的下标,由key指定。其中method和tolerance参数见上述。如果method=None,且key指定的label找不到,则抛出异常。 .get_value(series, key):寻找Series指定label处的值。若key指定的label找不到,则...
3.DataFrame.get_value(index, col, takeable=False)等价于.loc[index, col],它返回单个值。而Series.get_value(label, takeable=False)等价于.loc[label],它也返回单个值 举例: + View Code 4..get(key[, default])方法与字典的get()方法的用法相同。对于DataFrame,key为col_label 举例: + View Code ...
sr2 = pd.Series([11,20,10], index=['d','c','a',]) sr1+sr2 sr3 = pd.Series([11,20,10,14], index=['d','c','a','b']) sr1+sr3 如何在两个Series对象相加时将缺失值设为0? sr1.add(sr2, fill_value=0) 灵活的算术方法:add, sub, div, mul 缺失数据:使用NaN(Not a Number)...
get_value, set_value方法 根据行和列的标签设置单个值 灵活运用前9个方法对后续批量数据清洗和处理有很大的帮助。 4.3 对象的相加和使用填充值算法 不同对象(Series和DataFrame)之间的算术行为是pandas提供的一项重要功能。在pandas库的简单介绍(1)已经介绍过Series对象相加的例子,这里说明一下DataFrame对象的加减。
value_counts方法 pandas.DataFrame按照某几列分组并统计:groupby+count pandas.DataFrame按照某列分组并求和 pandas.DataFrame按照某列分组并取出某个小组:groupby+get_group pandas.DataFrame排序 pandas.DataFrame按照行标签或者列标签排序:sort_index方法 pandas.DataFrame按照某列值排序:sort_values方法by参数 pandas....
df.index # 3.6 查看索引、数据类型和内存信息 df.info()# 3.7 查看数值型列的汇总统计 df.describe()# 3.8 查看每一列的唯一值和计数 df.apply(pd.Series.value_counts)4. 数据处理 4.1 重命名列名 4.2 选择性更改列名 4.3 批量更改索引 4.4 批量更改列名 4.5 设置姓名列为行索引 4.6 检查...
s = pd.Series(val, index = idx)# 通过append 方法添加,传入一个新的series 对象即可s = s.append(pd.Series({"this":9})) s = s.append(pd.Series({"this":10}))# 或者通过set_value 方法添加数据,比较append 方法set_value更便捷s.set_value("this",8)# 删除数据# 一般删除使用不多,更多是...
index/columns/values,分别对应了行标签、列标签和数据,其中数据就是一个格式向上兼容所有列数据类型的array。为了沿袭字典中的访问习惯,还可以用keys()访问标签信息,在series返回index标签,在dataframe中则返回columns列名;可以用items()访问键值对,但一般用处不大。
本文将从Python生态、Pandas历史背景、Pandas核心语法、Pandas学习资源四个方面去聊一聊Pandas,期望能给答主一点启发。 一、Python生态里的Pandas 五月份TIOBE编程语言排行榜,Python追上Java又回到第二的位置。Python如此受欢迎一方面得益于它崇尚简洁的编程哲学,另一方面是因为强大的第三方库生态。 要说杀手级的库,很难...
df.reset_index("col1") # 将索引设置为col1字段,并将索引新设置为0,1,2... df.rename(index=lambdax:x+1) # 批量重命名索引 6.数据分组、排序、透视 常用的数据分组的13个用法: df.sort_index().loc[:5] # 对前5条数据进索引排序 df.sort_values(col1) # 按照列col1排序数据,默认升序排列 ...