inplace:同drop()。是否在原始DataFrame上删除数据,默认为False,即在副本中删除。如果设置为True,则在调用drop_duplicates的DataFrame本身执行删除,返回值为None。 ignore_index:设置是否忽略行索引,默认为False,去重后的结果的行索引保持原索引不变。如果设置为True,则重置行索引为默认的整数索引。注意事项:在使用drop...
我们来到Python环境中,通过pandas的去重函数:drop_duplicates(),下面是官方的函数说明 解释一下各个参数:subset:表示要去重的列名,默认为 None。keep:有三个可选参数,分别是 first、last、False,默认为 first,表示只保留第一次出现的重复项,删除其余重复项,last 表示只保留最后一次出现的重复项,False 则表...
示例#1:使用TimedeltaIndex.drop_duplicates()函数,从给定的TimedeltaIndex对象中删除所有重复的值。只保留第一次出现的值。 # importing pandas as pdimportpandasaspd# Create the TimedeltaIndex objecttidx=pd.TimedeltaIndex(data=['06:05:01.000030','+23:59:59.999999','22 day 2 min 3us 10ns','+23:59...
然后,我们使用 ~df.index.duplicated() 来生成一个布尔索引,其中 True 表示非重复的索引值,False 表示重复的索引值。最后,我们通过这个布尔索引来筛选出非重复的索引值,从而得到去除重复索引后的 DataFrame。 另外,如果你想要直接在原 DataFrame 上进行修改,可以将 drop_duplicates 方法的 inplace 参数设置为 True。
Pandas中的drop_duplicates()函数用于删除数据框中的重复行。这个函数非常有用,特别是在处理大型数据集时,可以帮助我们清理数据并确保数据的唯一性。drop_duplicates()函数有一个名为keep的参数,它决定了在删除重复行时应保留哪些重复行。keep参数有三个可选值: ‘first’:默认值。只保留第一次出现的重复行,删除其...
drop_duplicates()的基本用法非常简单。默认情况下,它会移除所有重复的行,只保留第一次出现的行。 import pandas as pd# 创建一个包含重复行的DataFramedf = pd.DataFrame({ 'A': [1, 2, 2, 3], 'B': ['a', 'b', 'b', 'c']})df
df=df.drop_duplicates(subset=['sex'],keep='last')print(df) ignore_index参数测试 ignore_index=True重新排序 我们测试的时候能看到我们用的是保存后面的行值。true就是重新排序,我们会看到行是0,1,2的排序。 代码语言:javascript 代码运行次数:0 ...
Python | Pandas index . drop _ duplicates() 原文:https://www . geesforgeks . org/python-pandas-index-drop _ duplicates/ Python 是进行数据分析的优秀语言,主要是因为以数据为中心的 python 包的奇妙生态系统。 【熊猫】 就是其中一个包,让导入和分析数据变得容
ignore_index:如果设置为True,删除重复项后的行索引将被重置为从0开始的连续序列。下面通过几个示例来说明如何使用这个函数:默认情况下,如果DataFrame中有重复行,使用drop_duplicates()会删除所有列中值完全相同的行,如删除了最后一个与第一个完全相同的行。若想保留第一个出现的重复值,可以设置keep...
#df.drop_duplicates(['B'],keep=False) print(df) 输出结果: A B C D 1 3 1 5 3 2 3 2 4 3 从上述示例可以看出,删除重复项后,行标签使用的数字是原来的,并没有从 0 重新开始,那么我们应该怎么从 0 重置索引呢?Pandas 提供的 reset_index() 函数会直接使用重置后的索引。如下所示: ...