Pandas中的drop_duplicates()函数用于删除数据框中的重复行。这个函数非常有用,特别是在处理大型数据集时,可以帮助我们清理数据并确保数据的唯一性。drop_duplicates()函数有一个名为keep的参数,它决定了在删除重复行时应保留哪些重复行。keep参数有三个可选值: ‘first’:默认值。只保留第一次出现的重复行,删除其...
我们来到Python环境中,通过pandas的去重函数:drop_duplicates(),下面是官方的函数说明 解释一下各个参数:subset:表示要去重的列名,默认为 None。keep:有三个可选参数,分别是 first、last、False,默认为 first,表示只保留第一次出现的重复项,删除其余重复项,last 表示只保留最后一次出现的重复项,False 则表...
1、drop_duplicates() 输入任何参数,默认情况下根据所有列删除所有的重复行 df.drop_duplicates() 结果显示删除了最后一行,因为最后一行与第1行是完全一样的。 2、drop_duplicates(keep) 如果要指定删除第一个出现的重复值则输入参数keep='last' df.drop_duplicates(keep='last') 3、drop_duplicates(subset)...
Pandas中的drop_duplicates()函数是一个强大的工具,用于移除DataFrame中的重复行。这个函数接受几个关键参数:subset:可选,用于指定根据哪些列判断重复。默认情况下,它会比较所有列的值。keep:决定保留哪些重复数据,有三种选择:'first'(保留第一个出现的),'last'(保留最后一个出现的),或者'Fa...
在使用drop_duplicates方法时,可以通过subset参数来指定根据哪些列来判断重复值。这可以帮助你更精确地找到需要删除的重复行。同时,keep参数可以用来保留重复值中的某一个,这在处理重复数据时非常有用。如果不需要保留任何重复值,可以将keep参数设置为False并删除所有的重复行。 在处理大型DataFrame时,使用drop和drop_dupl...
#检测brand列的重复情况df.duplicated(subset=['brand']) df.drop_duplicates() 参数详解: subset:见上; keep:见上; inplace:默认为False,是否返回一个copy; ignore_index:默认为False,是否重新构建索引。 df.drop_duplicates() df.drop_duplicates(subset=['brand','style'], keep='last')...
drop_duplicates()函数的语法格式如下: df.drop_duplicates(subset=['A','B','C'],keep='first',inplace=True) 参数说明如下: subset:表示要进去重的列名,默认为 None。 keep:有三个可选参数,分别是 first、last、False,默认为 first,表示只保留第一次出现的重复项,删除其余重复项,last 表示只保留最后一...
我正在尝试使用子集(drop_duplicates=‘’,keep=False)在我的数据帧中删除重复项。dffsameflname.drop_duplicates(subset=['INDIVIDUAL_LASTNAME'], keep=False) File "/var/webeng/opensource/aetna-anaconda/lib/python2.7: drop_duplicates() got a
keep=‘frist’:除了第一次出现外,其余相同的被标记为重复 keep='last':除了最后一次出现外,其余相同的被标记为重复 keep=False:所有相同的都被标记为重复 drop_duplicates函数用于删除Series、DataFrame中重复记录,并返回删除重复后的结果 pandas.DataFrame.drop_duplicates(self, subset=None, keep='first', inplace...
1. drop_duplicates 函数的基本使用 drop_duplicates函数的基本语法如下: DataFrame.drop_duplicates(subset=None,keep='first',inplace=False) Python Copy subset参数用于指定需要考虑的列,默认为 None,表示考虑所有列。 keep参数用于指定在去除重复项时保留哪一项。默认为 ‘first’,表示保留第一次出现的项。如果设...