我们来到Python环境中,通过pandas的去重函数:drop_duplicates(),下面是官方的函数说明 解释一下各个参数:subset:表示要去重的列名,默认为 None。keep:有三个可选参数,分别是 first、last、False,默认为 first,表示只保留第一次出现的重复项,删除其余重复项,last 表示只保留最后一次出现的重复项,False 则表...
Pandas中的drop_duplicates()函数用于删除数据框中的重复行。这个函数非常有用,特别是在处理大型数据集时,可以帮助我们清理数据并确保数据的唯一性。drop_duplicates()函数有一个名为keep的参数,它决定了在删除重复行时应保留哪些重复行。keep参数有三个可选值: ‘first’:默认值。只保留第一次出现的重复行,删除其...
pd.drop_duplicates(subset=None, keep='first', inplace=False, ignore_index=False) 返回去除重复行的DataFrame subset: 列名,默认为所有列 设置根据列名来判断重复值,默认值为所有列元素相同时才判定为重复值。 keep: 'first', 'last', False,默认为first 决定保留的数据行。 first:保留第一个出现的重复数据...
df_keep_last = df.drop_duplicates(keep='last') df_drop_all = df.drop_duplicates(keep=False) print(df_keep_last) print(df_drop_all) 上述代码演示了如何根据不同的keep参数值来保留或删除重复行。 使用inplace参数 默认情况下,drop_duplicates()方法不会修改原始 DataFrame,而是返回一个新的 DataFrame。
在使用drop_duplicates()时,需要注意以下几点: 默认情况下,drop_duplicates()会考虑所有列来确定重复项。如果你只关心某些列,应该使用subset参数。 keep参数可以让你指定保留哪些重复项。它有三个选项:first(默认值)、last和False。 如果你的DataFrame很大,原地操作(inplace=True)可能会更节省内存。
>>> idx.drop_duplicates(keep='first') Index(['lama', 'cow', 'beetle', 'hippo'], dtype='object') 值‘last’ 保留每组重复条目的最后一次出现。 >>> idx.drop_duplicates(keep='last') Index(['cow', 'beetle', 'lama', 'hippo'], dtype='object') 值False 丢弃所有重复条目集。 >>> id...
ignore_index:如果设置为True,删除重复项后的行索引将被重置为从0开始的连续序列。下面通过几个示例来说明如何使用这个函数:默认情况下,如果DataFrame中有重复行,使用drop_duplicates()会删除所有列中值完全相同的行,如删除了最后一个与第一个完全相同的行。若想保留第一个出现的重复值,可以设置keep...
pandas函数drop_duplicates用于去除DataFrame中的重复行。 语法: DataFrame.drop_duplicates(subset=None, keep='first', inplace=False) 参数说明: subset:指定要考虑的列名或列名的列表。默认值为None,表示考虑所有列。 keep:指定保留哪个重复的行。可选值为'first'(保留第一个出现的重复行)、'last'(保留最后一个...
#检测brand列的重复情况df.duplicated(subset=['brand']) df.drop_duplicates() 参数详解: subset:见上; keep:见上; inplace:默认为False,是否返回一个copy; ignore_index:默认为False,是否重新构建索引。 df.drop_duplicates() df.drop_duplicates(subset=['brand','style'], keep='last')...
drop_duplicates 删除重复的行。 默认情况下,重复集的第一个观察行被认为是唯一的,但每个方法都有一个keep参数来指定要保留的目标。 keep='first' (默认值):标记/删除重复项,第一次出现除外。 keep='last':标记/删除重复项,除了最后一次出现。 keep=False:标记/删除所有重复项。