我们来到Python环境中,通过pandas的去重函数:drop_duplicates(),下面是官方的函数说明 解释一下各个参数:subset:表示要去重的列名,默认为 None。keep:有三个可选参数,分别是 first、last、False,默认为 first,表示只保留第一次出现的重复项,删除其余重复项,last 表示只保留最后一次出现的重复项,False 则表...
Pandas中的drop_duplicates()函数用于删除数据框中的重复行。这个函数非常有用,特别是在处理大型数据集时,可以帮助我们清理数据并确保数据的唯一性。drop_duplicates()函数有一个名为keep的参数,它决定了在删除重复行时应保留哪些重复行。keep参数有三个可选值: ‘first’:默认值。只保留第一次出现的重复行,删除其...
pandas函数drop_duplicates用于去除DataFrame中的重复行。 语法: DataFrame.drop_duplicates(subset=None, keep='first', inplace=False) 参数说明: subset:指定要考虑的列名或列名的列表。默认值为None,表示考虑所有列。 keep:指定保留哪个重复的行。可选值为'first'(保留第一个出现的重复行)、'last'(保留最后一个...
1、drop_duplicates() 输入任何参数,默认情况下根据所有列删除所有的重复行 df.drop_duplicates() 结果显示删除了最后一行,因为最后一行与第1行是完全一样的。 2、drop_duplicates(keep) 如果要指定删除第一个出现的重复值则输入参数keep='last' df.drop_duplicates(keep='last') 3、drop_duplicates(subset)...
drop_duplicates(subset=None, keep='first', inplace=False, ignore_index=False) 参数说明: subset:指定根据哪些列来判断重复值,默认为None,表示根据所有列来判断。如果指定了子集,则只要子集的这些列的数据都相同,就算重复值。 keep:设置保留重复值中的哪一个,可以设置的值有{‘first’, ‘last’, False},...
默认情况下,drop_duplicates()会考虑所有列来确定重复项。如果你只关心某些列,应该使用subset参数。 keep参数可以让你指定保留哪些重复项。它有三个选项:first(默认值)、last和False。 如果你的DataFrame很大,原地操作(inplace=True)可能会更节省内存。 四、结论 ...
drop_duplicates()函数的语法格式如下: df.drop_duplicates(subset=['A','B','C'],keep='first',inplace=True) 参数说明如下: subset:表示要进去重的列名,默认为 None。 keep:有三个可选参数,分别是 first、last、False,默认为 first,表示只保留第一次出现的重复项,删除其余重复项,last 表示只保留最后一...
pandas drop_duplicates 函数: DataFrame.drop_duplicates(subset=None, keep='first', inplace=False) 参数:这个drop_duplicate方法是对DataFrame格式的数据,去除特定列下面的重复行。返回DataFrame格式的数据。 1 2 3 4 5 6 subset : column labelorsequence of labels, optional...
可以使用drop_duplicates()函数来实现删除重复项的功能。 drop_duplicates()函数的语法如下: 代码语言:txt 复制 DataFrame.drop_duplicates(subset=None, keep='first', inplace=False) 参数说明: subset:可选参数,用于指定要检查重复项的列或列的列表。默认为None,表示检查所有列。 keep:可选参数,用于指定保留哪个...