我们来到Python环境中,通过pandas的去重函数:drop_duplicates(),下面是官方的函数说明 解释一下各个参数:subset:表示要去重的列名,默认为 None。keep:有三个可选参数,分别是 first、last、False,默认为 first,表示只保留第一次出现的重复项,删除其余重复项,last 表示只保留最后一次出现的重复项,False 则表...
inplace:同drop()。是否在原始DataFrame上删除数据,默认为False,即在副本中删除。如果设置为True,则在调用drop_duplicates的DataFrame本身执行删除,返回值为None。 ignore_index:设置是否忽略行索引,默认为False,去重后的结果的行索引保持原索引不变。如果设置为True,则重置行索引为默认的整数索引。注意事项:在使用drop...
问基于条件的Pandas中drop_duplicates()EN在数据处理和分析中,重复数据是一个常见的问题。为了确保数据的...
# 只根据列'A'去除重复项df_unique1 = df.drop_duplicates(subset=['A'])df_unique1 3. 保留重复项默认情况下,drop_duplicates()会保留第一次出现的行。如果你想要保留最后一次出现的行,可以使用keep参数。 # 保留最后一次出现的重复项df_unique2 = df.drop_duplicates(subset=['A'],keep='last')df_un...
Pandas中的drop_duplicates()函数用于删除数据框中的重复行。这个函数非常有用,特别是在处理大型数据集时,可以帮助我们清理数据并确保数据的唯一性。drop_duplicates()函数有一个名为keep的参数,它决定了在删除重复行时应保留哪些重复行。keep参数有三个可选值: ‘first’:默认值。只保留第一次出现的重复行,删除其...
处理方式是可以在excel表中用trim(clean())清理空白符隐藏符(其实这个可能是最稳妥的) 或者在DataFrame中先用正则替换掉空白符如下: s1.replace('\s','',regex=True,inplace=True) s1.drop_duplicates() 其中\s:表示匹配空白,即 空格,tab键等
文件"C:\Users\Agnij\Anaconda3\lib\site-packages\pandas\core\frame.py",第4811行,在drop_duplicates 重复=self.duplicated(subset,保留=保留) 文件"C:\Users\Agnij\Anaconda3\lib\site-packages\pandas\core\frame.py",第4888行,在重复标签中,shape=map(list,zip(*map(f,vals))) ...
drop_duplicates函数可以和其他pandas函数一起使用,以实现更复杂的功能。 例如,我们可以先使用sort_values函数对数据集进行排序,然后使用drop_duplicates函数去除重复项: importpandasaspd data={'name':['Alice','Bob','Charlie','Alice','Bob'],'age':[25,30,35,25,30],'city':['New York','Los Angeles...
1. 重复值的处理 利用drop_duplicates()函数删除数据表中重复多余的记录, 比如删除重复多余的ID. 代码语言:javascript 代码运行次数:0 运行 AI代码解释 1importpandasaspd2df=pd.DataFrame({"ID":["A1000","A1001","A1002","A1002"],3"departmentId":[60001,60001,60001,60001]})4df.drop_duplicates() ...
1、drop_duplicates() 输入任何参数,默认情况下根据所有列删除所有的重复行 df.drop_duplicates() 结果显示删除了最后一行,因为最后一行与第1行是完全一样的。 2、drop_duplicates(keep) 如果要指定删除第一个出现的重复值则输入参数keep='last' df.drop_duplicates(keep='last') 3、drop_duplicates(subset)...