例如,某列数据如下:Open:Open11223删除后变为3443那么以下哪种参数可以帮助我们实现删除先出现的重复值。选项 A. df[‘open’].drop_first()选项 B. df[‘open].drop_duplicates(keep=’first’)选项 C. df[‘open’].drop_duplicates(keep=’last’)选项 D. df[‘open’].drop_last() ...
inplace:同drop()。是否在原始DataFrame上删除数据,默认为False,即在副本中删除。如果设置为True,则在调用drop_duplicates的DataFrame本身执行删除,返回值为None。 ignore_index:设置是否忽略行索引,默认为False,去重后的结果的行索引保持原索引不变。如果设置为True,则重置行索引为默认的整数索引。注意事项:在使用drop...
1、drop_duplicates() 输入任何参数,默认情况下根据所有列删除所有的重复行 df.drop_duplicates() 结果显示删除了最后一行,因为最后一行与第1行是完全一样的。 2、drop_duplicates(keep) 如果要指定删除第一个出现的重复值则输入参数keep='last' df.drop_duplicates(keep='last') 3、drop_duplicates(subset)...
# 只根据列'A'去除重复项df_unique1 = df.drop_duplicates(subset=['A'])df_unique1 3. 保留重复项默认情况下,drop_duplicates()会保留第一次出现的行。如果你想要保留最后一次出现的行,可以使用keep参数。 # 保留最后一次出现的重复项df_unique2 = df.drop_duplicates(subset=['A'],keep='last')df_un...
我们来到Python环境中,通过pandas的去重函数:drop_duplicates(),下面是官方的函数说明 解释一下各个参数:subset:表示要去重的列名,默认为 None。keep:有三个可选参数,分别是 first、last、False,默认为 first,表示只保留第一次出现的重复项,删除其余重复项,last 表示只保留最后一次出现的重复项,False 则...
drop_duplicates()是Pandas库中的一个非常有用的函数,用于删除数据框中的重复行。这个函数有许多参数可以调整,其中之一就是keep参数。keep参数决定了在删除重复行时,应保留哪些重复行。
一、drop_duplicates函数用途 pandas中的drop_duplicates()函数可以通过SQL中关键字distinct的用法来理解,根据指定的字段对数据集进行去重处理。 二、drop_duplicates()函数的具体参数 * 用法: DataFrame.drop_duplicates(subset=None, keep=‘first’, inplace=False) ...
Pandas去重函数:drop_duplicates()的数据清洗利器 前言 在数据处理和分析中,重复数据是一个常见的问题。为了确保数据的准确性和一致性,我们需要对数据进行去重操作。Pandas提供了一个功能强大的去重函数——drop_duplicates(),它可以帮助我们轻松地处理数据中的重复值。本文将详细介绍drop_duplicates()函数的用法和应用场...
在pandas中删除重复出现的行可以使用drop_duplicates()方法。该方法会返回一个新的DataFrame,其中不包含重复的行。 具体步骤如下: 导入pandas库:import pandas as pd 创建DataFrame:假设我们有一个名为df的DataFrame。 使用drop_duplicates()方法删除重复行:df.drop_duplicates() ...
pandas学习-函数drop_duplicates的用法 pandas函数drop_duplicates用于去除DataFrame中的重复行。 语法: DataFrame.drop_duplicates(subset=None, keep='first', inplace=False) 参数说明: subset:指定要考虑的列名或列名的列表。默认值为None,表示考虑所有列。