sort_values():根据列的值进行排序。 sort_index():根据行或列的索引进行排序。 实例 操作方法说明示例 按值排序df.sort_values(by, ascending)按照指定的列(by)排序,ascending控制升序或降序,默认为升序df.sort_values(by='Age', ascending=False)
df.ix[row_index, column_name] # 选择指定的列 df.filter(items=['column_name1', 'column_name2']) # 选择列名匹配正则表达式的列 df.filter(regex='regex') # 随机选择 n 行数据 df.sample(n=5)数据排序函数说明 df.sort_values(column_name) 按照指定列的值排序; df.sort_values([column_name1...
`df.sort_index()` 是 Pandas DataFrame 对象的一个方法,用于根据索引对 DataFrame 进行排序。默认情况下,它会按照升序(ascending order)对索引进行排序,但你也可以通过参数指定降序(descending order)。 ### 基本用法 假设你有一个 DataFrame `df`,你可以直接调用 `df.sort_index()` 来根据索引进行排序: impor...
一,按照索引排序(sort by index) 对于一个Series或DataFrame,可以按照索引进行排序,使用sort_index()函数来实现索引的排序: DataFrame.sort_index(axis=0, level=None, ascending=True, inplace=False, kind='quicksort', na_position='last', sort_remaining=True, ignore_index=False, key=None) 参数axis用于...
sort_values()和sort_index()只能对DataFrame进行升序或降序排列,若希望随机打乱排列顺序(即随机重排),方法如下:步骤1:使用numpy.random.permutation()产生一个重排后的整数数组【注:numpy.random.permutation可随机排列一个序列,返回一个随机排列后的序号】步骤2:使用.iloc[]或take()得到重排后的Pandas对象。
df_sorted_multi = df.sort_values(by=['Region', 'Sales'], ascending=[True, False])print("\n先按 'Region' 列升序排序,再按 'Sales' 列降序排序:")print(df_sorted_multi)输出结果 解释 升序排序:按照 `'Sales'` 列的值从小到大排序,`200` 排在最前面,`500` 排在最后面。降序排序:通过...
df.loc[df['Q1']== 8] # 等于8 df.loc[df.Q1== 8] # 等于8 df.loc[df['Q1']> 90, 'Q1':] # Q1大于90,显示Q1及其后所有列 3、函数筛选# 查询最大索引的值 df.Q1[lambdas: max(s.index)] # 值为21 # 计算最大值 max(df.Q1.index) ...
1、索引排序df.sort_index() s.sort_index()# 升序排列df.sort_index()# df也是按索引进行排序df.team.sort_index()s.sort_index(ascending=False)# 降序排列s.sort_index(inplace=True)# 排序后生效,改变原数据# 索引重新0-(n-1)排,很有用,可以得到它的排序号s...
df.sort_values(by=['a','b'], inplace=True)print(df) 打印结果如下: b a d c 1 3 1 4 5 2 5 1 4 3 3 5 1 6 2 0 2 4 1 5 排序算法 sort_index() 和 sort_values() 都提供了 kind 参数来指定排序算法,可选项有{'quicksort', 'mergesort', 'heapsort'},分别表示快排、二路归并...
#根据每人的身高进行排序df1.sort_values(by=['height']) #先以身高排序,身高相同按年龄由低到高排序df1.sort_values(by=['height','age']) sort_values()函数介绍: 功能:以dataframe中的索引为依据进行排序,通过传递axis参数和排序顺序,可以对dataframe进行排序。