df=pd.DataFrame({'group':['A','A','B','B','C'],'value1':[10,20,30,40,50],'value2':[100,200,300,400,500],'value3':[1,2,3,4,5],'website':['pandasdataframe.com']*5})result=df.groupby('group').agg({'value1':'sum','value2':'mean','value3':['min','max']}...
grouped_single.columns = ['age_mean', 'age_min', 'age_max'] grouped_single = grouped_single.reset_index() # 聚合多列 grouped_multiple = df.groupby(['Team', 'Pos']).agg({'Age': ['mean', 'min', 'max']}) grouped_multiple.columns = ['age_mean', 'age_min', 'age_max'] gr...
#A single group can be selected using get_group():grouped.get_group("bar")#Out:ABC D1barone0.2541611.5117633barthree0.215897-0.9905825bartwo -0.0771181.211526Orfor an object grouped onmultiplecolumns:#for an object grouped on multiple columns:df.groupby(["A","B"]).get_group(("bar","one...
First let's create duplicate columns by: df.columns = ['Date','Date','Depth','Magnitude Type','Type','Magnitude'] df Copy A general solution which concatenates columns with duplicate names can be: df.groupby(df.columns, axis=1).agg(lambdax: x.apply(lambday:','.join([str(l)forliny...
Pandas Groupby Max多列 如果需要max所有没有group的列,可以使用: df = df.groupby('group', sort=False).max()print (df) strings floatsgroup a ab 8.0b 9.0c 12 11.0 如果添加next[],则第二个解决方案有效: df = df.groupby(['group'], sort=False)[[x for x in df.columns if x != 'group...
评论 In [23]: #行列聚合,这里使用groupby数据分组内容,详细学习groupby函数可参考第三节内容,groupby函数指定分类对象分组 df_group = DP_table.groupby(['区域']).apply(lambda x: x['商品品类'].unique()).reset_index() df_group.rename(columns={0:'商品品类'},inplace=True)#重命名 df_group ....
columns=['user', 'another_user', 'mate_type']) result = (pairs_df.groupby(['user', 'anoth...
df.columns.codes[0] == Int64Index([0, 1, 0, 1]) 使用多重索引构建一个Dataframe 除了从CSV文件读取和从现有列构建外,还有一些方法可以创建多重索引。它们不太常用——主要用于测试和调试。 由于历史原因,使用Panda自己的多索引表示的最直观的方法不起作用。
让DataFrame的一排指定列columns,旋转成为竖向索引index,如果原来的DataFrame只有一排“columns”,那么返回的就是Series,否则返回的还是DataFrame stack的作用 功能:将列索引的指定层级“堆叠”到行索引中,生成长格式数据。 适用场景:处理多维度列标签,便于后续分析(如groupby、pivot等)。
top_5_subcategories_chained=(df[df['Category']=='Electronics']#1.筛选.groupby('Sub-Category')#2.分组.agg(#3.聚合 TotalSales=('Sales','sum'),AverageProfit=('Profit','mean')).sort_values(by='TotalSales',ascending=False)#4.排序.head(5)#5.取前5)print(top_5_subcategories_chained) ...