data={'website':['pandasdataframe.com']*8,'category':['A','A','B','B','C','C','D','D'],'product':['X','Y','X','Y','X','Y','X','Y'],'sales':[100,150,200,120,80,250,300,180]}df=pd.DataFrame(data)# 筛选出平均销售额大于150的组filtered=df.groupby(['categor...
300],'quantity':[10,20,15,25,30],'pandasdataframe.com':[1,2,3,4,5]}df=pd.DataFrame(data)# 使用 agg 方法进行多列操作result=df.groupby(['category','subcategory']).agg({'sales':'sum','quantity':'mean','pandas
In [25]: df3.groupby(["X"]).get_group("A") Out[25]: X Y 0 A 1 2 A 3 In [26]: df3.groupby(["X"]).get_group("B") Out[26]: X Y 1 B 4 3 B 2 dropna 默认情况下,NaN数据会被排除在groupby之外,通过设置 dropna=False 可以允许NaN数据: In [27]: df_list = [[1, 2,...
在Pandas中,可以通过在groupby()函数中传入多个列名来实现多列分组。例如,假设我们有一个包含"Country"、"City"和"Year"三列的数据集,我们想要按照"Country"和"City"两列进行分组,可以使用以下代码: 代码语言:python 代码运行次数:0 复制Cloud Studio 代码运行 grouped = df.groupby(['Country', 'City']) 上述...
默认情况下,groupby 总是在 row 方向切割。可以指定在 columns 方向切割。 首先定义处理列索引的函数: def deal_column_name(col_name): print(f'### {col_name} ###') if ord(col_name) <= 66: return 'AB' else: return 'CD' 在调用 groupby 时指定沿 columns 方向切割: >> df.groupby(deal_...
columns=['a','b','c','d','e'], index=['Joe','Steve','Wes','Jim','Travis'] ) people mapping = {'a':'red','b':'red','c':'blue','d':'blue','e':'red','f':'orange'} by_column= people.groupby(mapping, axis=1) ...
分割数据的目的是将DF分割成为一个个的group。为了进行groupby操作,在创建DF的时候需要指定相应的label: df = pd.DataFrame( ...: { ...: "A": ["foo", "bar", "foo", "bar", "foo", "bar", "foo", "foo"], ...: "B": ["one", "one", "two", "three", "two", "two", "one...
columns = ['a','b','c','d'])print(df)print('---') mapping = {'a':'one','b':'one','c':'two','d':'two','e':'three'} by_column = df.groupby(mapping, axis = 1)print(by_column.sum())print('---')# mapping中,a、b列对应的为one,c、d列对应的为two,以字典来分组...
grouped = df['data1'].groupby(df['key1']) grouped 1. 2. 变量grouped是一个GroupBy对象,它实际上还没有进行任何计算,只是含有一些有关分组键df['key1']的中间数据而已,然后我们可以调用GroupBy的mean方法来计算分组平均值: grouped.mean() 1. ...
您可以通过 A 和 B 计算 C 的聚合总和,然后将结果数据帧与原始数据帧合并