import polars as pl import time # 读取 CSV 文件 start = time.time() df_pl_gpu = pl.read_csv('test_data.csv') load_time_pl_gpu = time.time() - start # 过滤操作 start = time.time() filtered_pl_gpu = df_pl_gpu.filter(pl.col('value1') > 50) filter_time_pl_gpu = time.t...
In [32]: %%time ...: files = pathlib.Path("data/timeseries/").glob("ts*.parquet") ...: counts = pd.Series(dtype=int) ...: for path in files: ...: df = pd.read_parquet(path) ...: counts = counts.add(df["name"].value_counts(), fill_value=0) ...: counts.astype(in...
In [12]: df.loc[:, ['B', 'A']] = df[['A', 'B']].to_numpy() In [13]: df[['A', 'B']] Out[13]: A B 2000-01-01 0.469112 -0.282863 2000-01-02 1.212112 -0.173215 2000-01-03 -0.861849 -2.104569 2000-01-04 0.721555 -0.706771 2000-01-05 -0.424972 0.567020 2000-01-0...
row = df[i][df[i].isnull().values].index.tolist() print('列名:"{}", 第{}行位置有缺失值'.format(i,row)) # 众数填充 heart_df['Thal'].fillna(heart_df['Thal'].mode(dropna=True)[0], inplace=True) # 连续值列的空值用平均值填充 dfco...
通过标签选择的语法格式为:df.loc[行,列],行和列均可以是单个标签、列表或者切片,主要有以下几种选择方法: 1. 选择某一行数据 df.loc[row_label] 2. 选择某一列数据 df.loc[:, column_label] 这个方法用于选取某一列数据,其中 column_label 是列标签。第一个 “:” 表示选取所有行。 3. 选取不连续的...
sc= s.value_counts(sort = False) # 也可以这样写:pd.value_counts(sc, sort =False) print(sc) 4.成员资格 # 成员资格:.isin() s= pd.Series(np.arange(10,15)) df= pd.DataFrame({'key1':list('asdcbvasd'),'key2':np.arange(4,13)}) ...
Series 结构,也称 Series 序列,是 Pandas 常用的数据结构之一,它是一种类似于一维数组的结构,由一组数据值(value)和一组标签组成,其中标签与数据值之间是一一对应的关系。 Series 可以保存任何数据类型,比如整数、字符串、浮点数、Python 对象等,它的标签默认为整数,从 0 开始依次递增。Series 的结构图,如下所示...
In [7]: df.info(memory_usage="deep") <class 'pandas.core.frame.DataFrame'> RangeIndex: 5000 entries, 0 to 4999 Data columns (total 8 columns): # Column Non-Null Count Dtype --- --- --- --- 0 int64 5000 non-null int64 1 float64 5000 non-null float64 2 datetime64[ns] 5000...
我们创建了一个100万行的DF。 复制 importosimportpandasaspdfrommultiprocessingimportPoolN=1_000_000if__name__=='__main__':cpus=os.cpu_count()pool=Pool(cpus-1)async_results=[]for_inrange(N):async_results.append(pool.apply_async(generate_record))pool.close()pool.join()data=[]fori,async...
groupby('P_id')['Price'].rank(ascending=True) # Display result print("Result:\n",df) OutputThe output of the above program is:Python Pandas Programs »pd.NA vs np.nan for pandas Pandas: selecting rows whose column value is null / None / nan ...