import pandas as pd # 使用字典创建 DataFrame 并指定列名作为索引 mydata = {'Column1': [1, 2, 3], 'Column2': ['a', 'b', 'c']} df = pd.DataFrame(mydata) df # 输出 Column1 Column2 0 1 a 1 2 b 2 3 c 指定行索引: # 指定行索引 df.index = ['row1', 'row2', '...
1. 选取多个DataFrame列 代码语言:javascript 代码运行次数:0 运行 AI代码解释 # 用列表选取多个列 In[2]: movie = pd.read_csv('data/movie.csv') movie_actor_director = movie[['actor_1_name', 'actor_2_name', 'actor_3_name', 'director_name']] movie_actor_director.head() Out[2]: 代码...
示例:import pandas as pdimport numpy as np# 创建一个带有缺失值的DataFramedata = {'Name': ['John', 'Emma', np.nan],'Age': [25, np.nan, 35],'City': ['New York', 'London', 'Paris']}df = pd.DataFrame(data)print(df)程序输出: Name Age City0 John 25.0 New ...
(3) DataFrame的索引对其特性 df1 = pd.DataFrame({'A':[1,2,3]},index=[1,2,3]) df2 = pd.DataFrame({'A':[1,2,3]},index=[3,1,2])print(df1)print(df2) df1-df2#由于索引对齐,因此结果不是0 (4) 根据类型选择列 df.select_dtypes(include=['number']).head() (5) Series转换为Data...
Calling drop with a sequence of labels will drop values from either axis. To illustrate this, we first create an example DataFrame: ->(删除某个行标签, 将会对应删掉该行数据) 'drop([row_name1, row_name2]), 删除行, 非原地'data.drop(['Colorado','Ohio']) ...
1.df.index 将索引添加为新列 将索引添加为列的最简单方法是将df.index作为新列添加到Dataframe。考虑...
df.info() <class 'pandas.core.frame.DataFrame'> RangeIndex: 6040 entries, 0 to 6039 Data columns (total 5 columns): UserID 6040 non-null int64 Gender 6040 non-null object Age 6040 non-null int64 Occupation 6040 non-null int64 Zip-code 6040 non-null object dtypes: int64(3), object(2...
Pandas 之 DataFrame 常用操作 importnumpyasnp importpandasaspd 1. 2. This section will walk you(引导你) through the fundamental(基本的) mechanics(方法) of interacting(交互) with the data contained in a Series or DataFrame. -> (引导你去了解基本的数据交互, 通过Series, DataFrame)....
{column_name: arg Dict}Dict,其中arg Dict对应于pandas的关键字参数。to_datetime()对于不支持本机datetime的数据库(如SQLite)特别有用。 原转化的DataFrame各个字段数据类型为: 现在我们将time也转化为datetime形式: sql_table ='metric_value' df_sql=pd.read_sql(sql_table,engine,parse_dates=['time']) ...
df.fillna(value=x) # x替换DataFrame对象中所有的空值,持 df[column_name].fillna(x) s.astype(float) # 将Series中的数据类型更改为float类型 s.replace(1,'one') # ‘one’代替所有等于1的值 s.replace([1,3],['one','three']) # 'one'代替1,'three'代替3 df.rename(columns=lambdax:x+1)...