导入pandas库:import pandas as pd 创建一个DataFrame对象,例如:df = pd.DataFrame(data) 使用reset_index()方法重置索引:df.reset_index() 如果想保留原来的索引列,可以使用reset_index(drop=False),其中drop=False表示保留原索引列。 重置索引的优势是可以重新组织数据,并且使数据更易于处理和分析。它常用于数据...
Reset the index back to 0, 1, 2: importpandas as pd data = { "name": ["Sally","Mary","John"], "age": [50,40,30], "qualified": [True,False,False] } idx = ["X","Y","Z"] df = pd.DataFrame(data, index=idx)
DataFrame.reset_index(level=None,drop=False,inplace=False,col_level=0,col_fill='') For DataFrame with multi-level index, return new DataFrame with labeling information in the columns under the index names, defaulting to ‘level_0’, ‘level_1’, etc. if any are None. For a standard ind...
DataFrame.reset_index(level=None, drop=False, inplace=False, col_level=0, col_fill='') drop 参数表示是否删除原始索引,如果设置为False,那么索引转换为列;如果设置为True,表示把索引删除。 有如下数据df,存在一个行索引: df = pd.DataFrame([('bird', 389.0), ('bird', 24.0), ('mammal', 80.5)...
reset_index()是pandas中将索引重置成自然数的方法,不会改变原始数据的内容和排列顺序。 DataFrame.reset_index(level=None, drop=False, inplace=False, col_level=0, col_fill=‘’): level: 如果行索引是多重索引,level用于设置重置哪些等级的索引。指定目标等级的索引用 int,str,tuple,list 等,默认None。
下面是 reset_index() 方法的一些基本用法: 基本使用: python import pandas as pd # 创建一个简单的 DataFrame df = pd.DataFrame({ 'A': ['A0', 'A1', 'A2', 'A3'], 'B': ['B0', 'B1', 'B2', 'B3'], 'C': ['C0', 'C1', 'C2', 'C3'], 'D': ['D0', 'D1', 'D2',...
使用reset_index方法可以重置DataFrame的索引。默认情况下,原索引会成为新DataFrame的一列。 python reset_df = df.reset_index() print(" DataFrame after reset_index (default):") print(reset_df) (可选)指定reset_index方法中的参数,如drop,来决定是否保留原索引作为一列: 如果你不希望原索引成为新DataFram...
reset_index()是pandas中将索引重置成自然数的方法,不会改变原始数据的内容和排列顺序。 DataFrame.reset_index(level=None, drop=False, inplace=False, col_level=0, col_fill=''): level: 如果行索引是多重索引,level用于设置重置哪些等级的索引。指定目标等级的索引用 int,str,tuple,list 等,默认None。
在Pandas中,DataFrame的索引是一个非常重要的概念,它可以帮助我们快速定位和访问数据。当我们使用drop方法删除某些行或列后,索引可能会发生变化。为了保持数据的一致性和完整性,我们需要重置索引。在Pandas中,可以使用reset_index方法来重置DataFrame的索引。reset_index方法将DataFrame的索引设置为默认的整数序列,从0开始递...
df = df.reset_index()构造数据 按条件筛选后,index非连续 重设index 拓展:在筛选后的 dataframe 中...